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Summary 

The synchronous machine-infinite bus system can be regarded as a multi- 
input-multi-output control system with the control inputs as changes in exci- 
tations and prime mover inpute and the outputs as reactive and active powers. 
In general there exists considerable coupling between the inputs and out- 
puts. The decoupling of "P and &" control loops not only improves the per- 
formance of the system but also simplifies the controller design since the dif- 
ficulty of design is closely associated with the degree of coupling between 
the various control loops. 

In the present paper the decoupling of active and reactive power control 
loops is achieved by state feedback with measurable states. First, small signal 
operation (dynamic) is studied to  determine F and G matrices t o  decouple 
the two control loops. The state feedback used for decoupling is also utilized 
t o  locate most of the closed loop poles a t  the desired places. The next part 
of the paper covers the transient stability analysis of the decoupled system. 
It is shown that decoupling of power control loops improves the dynamic 
and transient performance of the system. 

1. Introduction 

The problem of the decoupling of a time invariant linear system by state 
feedback was first considered by Morgan [I]. The necessary and sufficient 
conditions for decoupling were proposed by Falb and Wolovich [2] .  The 
decoupling technique has been applied to  flight control and chemical process 
control and i t  is seeking application to  power system problems. Nolan et al. 
[3 ]  have applied the decoupling technique to the optimization of turbo- 



alternator dynamic response. We [4] have applied this technique t o  decouple 
the two control loops of active and reactive power of a turbogenerator-infi- 
nite bus system (under dynamic conditions) without governor and voltage 
regulator. 

The main difficulty in designing controllers by state feedback is that the 
state variables used are not directly measurable. Of course Luenberger's 
[5] observer can be constructed to  estimate the unmeasurable states from 
the information available. But the addition of a dynamic observer will make 
the overall controlled system more complex and unduly sensitive t o  dis- 
turbances and changes in parameters [6].  Generally the machine equations 
contain flux linkages as state variables which are not measurable. These flux 
linkages can be expressed in terms of measurable quantities by a linear trans- 
formation [ 7 ] .  In the first part of this paper the active and reactive power 
control loops of a turbogenerator-infinite bus system with regulator and gov- 
ernor are decoupled, under dynamic conditions, by measurable state feed- 
back. 

Good transient response can only be obtained if at least part of the 
response occurs very quickly by the direct control of steam flow a t  a point 
close t o  the turbine. Morgan et al. [8] and Cushing e t  al. [9] have applied 
the turbine fast valving to  improve the transient stability. Dandeno e t  al. 
[ l o )  have found that superposition of supplementary signals on the error 
signal t o  the voltage regulator will improve system stability limits. The feed- 
back used for decoupling provides additional signals which are used to  con- 
trol the voltage regulator and HP turbine inlet vlaves t o  improve the trans- 
ient stability of the system. 

The transient stability studies are also made for the following cases t o  
enable direct comparison to  be made with the transient response of the 
decoupled system. 

(1) The fast intercepter valving 
(2) Combination of (1) and the feedback signals controlling voltage regu- 

lator and HP turbine inlet valves. 
( 3 )  With conventional excitation control and governor. 
The swing curves for the above cases are drawn for different reactive 

power loadings. I t  has been found that the state feedback used for decoupl- 
ing improves both dynamic and transient performance of the system over a 
fairly wide range of operating conditions. 

2. System model 

The system shown in Fig. 1 consists of a turbogenerator connected t o  an 
infinite bus through double circuit line. The generator is fitted with an auto- 
matic voltage regulator with derivative stabilizing circuit. The steam turbine 
(Fig. 2)  is represented by one time constant. The system is represented by 
the machine performance eyns. (A1)--(A3) [ l l ]  given in Appendix A and 
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Fig. 1. System model. 
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Fig. 2 .  Turbine  power response. 

the following expressions for Q and P, voltage regulator and governor respec- 
tively. 

3. Dynamic analysis 

If a Taylor series expansion is taken for the eqns. (A1)-(A3) and (1)+5) 
about an operating point, the resulting linear perturbation model can be rep- 
resented in state space form as 



where 

A,  B and C are constant real matrices. 

The state vector x contains d-axis field flux linkage A&, which is unmea- 
surable. A#,, can be expressed in terms of the field current which is mea- 
surable. Therefore we can find a non-singular matrix M [ 7 ]  which relates the 
new state vector z containing all measurable states t o  the state vector x by 
the equation: 

where 

z = [A6, ~ 6 ,  Ai,,, Av,,, Au,, AP,] ' 
Then 

where 

A = MAW-1,  B = MB, C = CM- 1 

The computation of matrix M is given in Appendix B. The constant matrices 
A, B and C of the system are given by 

- 0 C 1 3  0 0 
= [:it 0 C23 0 0 O 1  OJ 

The expressions for the elements of A and C matrices are given in Appendix C. 



4. Decoupling of multivariable control systems 

Consider a linear time invariant dynamical system S defined by state space 
equations: 

where x is an n-state vector, u is an m-input vector,y is an m-output vector 
and A, B, C are constant matrices. ?'he system S is said t o  be decoupled by a 
control law 

if the B* matrix is non-singular 121. 
Where v is a new input vector, F and G are m X n and m X m constant ma- 

trices and 

di = min j :  C ~ A ' B ~  0, j = 0 ,  1, ..., n -1 

= n - 1 if C,AIB = 0 for all values of j 

C, is the i-th row of C 

Then the G and F matrices are given by 

where d = max dl ,  M k ,  k = 0, 1 ,  ..., d are m X rn diagonal matrices and A'  = 

[CIAdi+l],  i = 1 ,  2, ..., m. 

The above feedback matrix F includes the location of m + dl + d2 + ... dm 
closed loop poles a t  the desired places. 

If the B* matrix is singular then the system can be decoupled by insertion 
of a precompensator a t  the input terminals 1121. 

5. Transient stability analysis of the decoupled system 

The transient stability of the system can be improved by employing spe- 
cial signals t o  control the voltage regulator and the steam turbine valves. The 
state feedback used for decoupling provides such special signals which are 
shown to  improve the stability. 

The state feedback decoupling arrangement of the system is shown in 
Fig. 3.  For the transient analysis we assume that the new input vector v will 
remain a t  its value just before the occurrence of the disturbance. The two 



Fig. 3 .  State feedback decoupling arrangement. 

inputs GI ,  L, (G = F x )  available due to  feedback are used t o  control the vol- 
tage regulator and HP turbine steam inlet valves. Realistic restrictions are 
imposed on (1) maximum and minimum values of field voltage and turbine 
output and ( 2 )  rate of increase and decrease of turbine power. 

For transient stability analysis of the decoupled system the following 
differential and network equations are to  be solved simultaneously. 

Xci + X ,  1 V, sin 6 
~ ( i f d  ) = 7 . - ( ~ f d  - j f d  + --;------- (xd - xi] p6 

xd + X, ,  'f X d  + X e  

V, sin 6 
i ,  = --- xq + X f  

ud = V,, sin 6 - x,iq 

uq = Vb cos 6 + x,id 

v," = v; + vd" 

P, = uq iq + vdid 

6 .  Numerical example 

The procedure and results are illustrated with the help of the following 
example. The parameters of the system and the initial operating conditions 



at the nominal operating point (0.9 pf lag) are given below [11,131. 
V ,  = 1 , P =  0.8 ,M = 0 .0337 ,D= 0.00945,p= 20 ,ps  =0.014,  k g  = 0.05, 

- xd = 2, XI = 0.232, xq = 1.7, x, = 0.18, Vb = 0.9414,6 = 48.2', = u f d  - 
2 . 3 8 7 , ~ ~  = 6s,7-, = 0.2 s , r ,  = 2 s a n d ~ , ~  = 0.5 S. 

- - 
?'he A,  B, C' matrices of eyn. (8) are calculated for the nominal operating 

point. Since the B* matrix calculated using eqn. (11) is singular a precom- 
pensatcr is required for decoilp!ing the system. The first nrdcr precnmpensa- 
tor [I21 has t h ~  following state space form: 

The new state vector x and the matrices A, B and C for the composite sys- 
tem are given by 

For the above composite system with r ,  = r3  = 1 and rl = r ,  = 2, we have d l  
= d,  = 2 and B* matrix nonsingular. Hence the system with the precom- 
pensator eyn. (26)  is decoupled by control law eyn. (10). Since m + d l  + 
d ,  = 6 ,  only 6 poles out of 7 can be placed at desired locations. The F and 
G matrices with the poles located at -3, -10 2 j4, -4, and -2 + j8, are 
calculated using eqns. (13) and (12) as 

The decoupled system will have the following closed loop transfer function 

The seventh closed loop pole which is not affected by state feedback is 
located at -0.5. 

To investigate the sensitivity of the decoupled system against changes in 
operating point, closed loop transfer functions at two operating points (up1 
and 0.8 pf lag) are computed using F and G matrices of eqn. (27). 

The unit step responses of the elements of transfer function H ( s )  (h ,  1 ,  

h l z ,  h z l ,  h Z 2 )  at  operating points 0.9 pf lag, upf, and 0.8 pf lag are shown in 
Fig. 4. The corresponding step responses for the original system are given in 
Fig. 5. It can be seen from the time responses that the strong coupling term 



Fig. 4.  Unit step response of the decoupled system. (a )  0.9 pf lagging; ( b )  Unity power fac- 
t o r ;  (c)  0.8 pf lagging. 

h l ,  of the natural system is reduced to  zero a t  0.9 pf lag (complete decoupl- 
ing) and t o  a very small value at other operating points. 

6.2 Transient stability analysis 

The transient stability studies are made for a 3-phase fault at the sending 
end of the transmission line. The fault is assumed t o  be cleared with the dis- 
connection of the faulty line by simultaneous operation of circuit breakers 
a t  either end. 

Due t o  the precompensator, we get one more differential equation: 

P(Z) = r1 u, (29) 

(a) (b)  (c) 

Fig. 5. Unit step response of the natural system. (a )  0.9 pf lagging; (b )  Unity power factor; 
( c )  0.8 pf lagging. 



The additional inputs due to feedback are given by 

- 

u2 = rnul  + r g u 2 ,  where v = F s  

For transient stability studies, the 7 differential eqns. (1 4)-(19) and (29) 

-80' ( C )  

Fig. 6 Swing curves. (a) 0.9 pf lagging with FCT = 0.3 s. (b )  Unity power factor with FCT = 
0.29 s .  ( c )  0.9 pf leading with FCT= 0.23 s. - Natural system; - . - . - . - decoupled 
system; - - - - - - Fast turbine valving; . . . . . . Combination of fast turbine valving and feed- 
back used for decoupling (This notation applies to  Fig. 7 also). 



together with network eqris. (20)-325) are solved simultaneously using the 
Runge-Kutta-Gill method [I41 with a time step of 0.01 s. 

The swing curves are drawn for the following cases with ufdmax = 6.12 
pu and L~,,,,, = 0. 

(1) Additional inputs due to  feedback controlling voltage regulator and 
HP turbine inlet valves with the following restrictions: P,,,, = 0.8 pu, 
P,,,, = 0.56 pu (it is assumed that the HP turbine controls 30% of the total 
turbine output), turbine power rate of decrease = 1 pu/s and rate of increase 
= 0.1 pu/s [13].  

(2) Turbine fast valving using turbine power response as shown [B] in Fig. 
2 with T, = 0.1 s. 

(3) Combination of (1) and (2) 
(4)  Using conventional excitation control and governor. 
To investigate the effect of changes in the initial operating conditions on 

the transient stability, the swing curves for the above 4 cases are drawn (Fig. 
6) for the following reactive power loadings with P = 0.8 pu. 

(a) Nominal operating point 0.9 pf lagging (Q = 0.3855 pu) with FCT = 

0.3 s. 
(b )  Unity power factor (Q = 0) with FCT = 0.29 s. 
( c )  0.9 pf leading ( Q  = -0.3855 pu) with FCT = 0.23 s. 
The terminal voltage recovery curves at the nominal operating point (0.9 

pf lag) for the above 4 cases are shown in Fig. 7. 
It is observed from Fig. 6 that the natural system, which is unstable, is 

made stable by the additional signals due to  feedback controlling the voltage 
regulator and the HP turbine inlet valves. I t  can be seen from the swing 
curves that the maximum rotor angle 6 during first forward and backward 
swing is less for the decoupled system than the fast turbine valving. Greater 

Fig. 7 .  Terminal voltage recovery curves at 0.9 pf lagging. 



improvement in stability limit can be obtained by the combination of the 
fast valving and the feedback for decoupling. This is expected because the 
combination makes it possible to  bring the entire output of the turbine 
under the control of supplementary signals. From Fig. 7, it can be seen that 
the voltage recovery curve for the decoupled system is better than for the 
other cases. 

7 .  Conclusions 

tinder dynamic conditions, the state feedback used for decoupling the 
control loops of active and reactive power helps in reducing the coupling 
present between the two control ioops to  zero at the nominal operating 
point and t o  a very small value at other operating points. The state feedback 
also helps in locating most of the closed loop poles a t  the desired locations. 

Under the transient conditions, the feedback used for decoupling provides 
additional signals which improve the stability over a fairly wide range of 
initial operating conditions. The relative improvement in the stability limit 
will depend upon (1) the rate of increase and decrease of turbine power, (2) 
the upper and lower limits of turbine power, and (3 )  the feedback matrix 3'. 
The transient analysis conducted also revealed that greater improvement in 
stability limit can be achieved by combining the state feedback with the tur- 
bine fast valving. 

Thus the state feedback used for decoupling is having an over-all beneficial 
effect on the system performance, both under dynamic and transient condi- 
tions over a reasonably wide operating range. 
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List of symbols 

Qd 7 @q = d-axis and q-axis flux linkage 
. . 
ld 7 ZC, = d-axis and q-axis components of armature current 



@f d = d-axis field flux linkage 
'Jd , 'Jq = d-axis and q-axis components of terminal voltage Vt 
VI, = Infinite busbar voltage 
L1f d = Equivalent field voltage 
vr = Voltage regulator reference voltage 
'J s = Derivative stabilizing signal 
X d ,  Xq = d-axis and q-axis steady state reactances. 
x& = d-axis transient reactance 
X , = Equivalent transmission line reactance 
7-f = Open circuit field time constant 
7, = Exciter time constant 
7, = Stabilizing loop time constant 
T~ h = Steam chest time constant 
/-I = Voltage regulator open loop gain 
PS = Gain of derivative stabilizing loop 
kg = Speed governor loop gain 
D - = Damping constant, including effect of damper circuits 
M = Inertia constant 
p, & = Active and reactive power a t  generator terminals 
pt = Turbine power output 
pu = Electrical output of generator 
U t  = HP inlet valve actuating signal 
Ur  = Exciter actuating signal 
HP, LP, IP = High pressure, low pressure and intermediate pressure 
6 = Rotor angle 
P U = Per unit 
s = Laplace transform variable 
~f = Power factor 
P = Differential operator d /dt  
FCT = Fault clearing time 
A = Used for linearized quantity 
x = State vector 

Y = Output vector 
u = Control input vector 

Appendix A 

The flux linkage equations are given by 



The voliage equations are give11 by 

u,, = V, sin 6 -- x,.i, 

Appendix B 

Calculation of bransformation matrix M 

For small signal operation, from eqns. (A1)--(A3), we have 

A,,, = [(x, - x & ) / X &  I Vb sin 6 A 6 + (X , /X i )  A 4fd 

The non zero elements of M are mll  = m22 = m44 = mh5 = m66 = 1 
mS1 = (xd -x;) V,, sin 6/X&, m,, = X,IX; 

where Xd = x, + .x,, X', = x i  + x, 

Appendix C 

Elements of A and C matrices 

1 - A2 1 
az l  = =[Al  --A2m3,/m3,],  aZ2  - --DIM, a,, = =- 

M M m,, 

Cii  = A5 - A 6  m31Im33, C13 = A~Im33, C21 = A7 -A8 m31/m33, 

C23  = A8lm33 

where i l l  t o  A,  are given by 

4q - iqxe 
A,  = 

X d  A =--- 
9 4 x; 

-v, 
A 3 = -, (x, - x&) sin 6 

Xd 



Vb cos 6 Vb sin 6 
A , =  ----(u + i  x ) +---- 

x, d q  XL (ud - iqxi 1 
.. 

where X,= x, + x, 
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A SIMPLE METHOD OF DErI'ERMINING THE AMPACITY OF 
EHV-OVERI-IEAD LINES 

M . J .  VOETEN 

N .  V. KEMA, Arrzhc,rn (The  Netherlands) 

(Received June 8 ,  1976)  

Summary 

The current-carrying capacity (ampacity) of overhead lines is first and 
foremost a thermal problem. This question has been dealt with in several 
articles, but, as far as is known, there is no method which provides a simple 
solution. In the present article, however, a method is given by which one can 
easily find the ampacity under varying weather conditions such as wind 
velocity and ambient temperature. 

1. Introduction 

The calculation of the ampacity of overhead lines is in fact a purely ther- 
mal problem, the production of heat being caused by the presence of an elec- 
trical current and sunshine, whereas the removal of heat occurs by convec- 
tion and by radiation. As soon as the removal of heat equals the production, 
a condition of equilibrium exists with a constant conductor temperature. 
Then the following formula applies: 

where 
I = admissible current 
R, = AC-resistance at the attained temperature 
W, = heat absorbed from sunshine 
W, = heat removed by convection 
W, = heat removed by radiation 

Beginning with a particular final conductor temperature it is possible t o  



determine at  different weather conditions the values of the components W,, 
W, and W, for the conductor considered. After that the Joule losses can be 
determined and thus the admissible current. In the following the different 
components will be discussed separately. 

2. Solar heat 

The amount of heat received by a flat surface normal to  the sun's rays 
depends very much on the clearness of the atmosphere, the solar altitude and 
the nature of the surface. From measurements [I] it is known that the 
maximum heat received by a black surface at  sea level ( H ,  = 90") can be 
about 1040 W m-! The solar heat absorbed by a conductor can be calculated 
using the formula 

W ,  = ad W ,  sin 6 ( W  m-l) 

where 
a = solar absorption coefficient of the conductor 
d = conductor outside diameter (m) 
Wn = solar heat absorbed by a standard surface normal t o  the sun's rays 

(W m-2) 
6 = arc cos {cos H, X cos (2,-Z, )) 

where 
Hc = solar altitude 
2, = azimuth of the sun 
Z,  = azimuth of the conductor 

Starting from the most unfavourable situation (2,-2, = 90" ) one can 
show 6 = 90". Hence the formula for W ,  becomes 

W ,  = otd W ,  

Wn depends on Hc and varies at sea level and at  altitude 52" north from 575 

TABLE 1 

Maximum solar heat per month 

Month W, (W m-2 ) 

January, December 700 
February, November 800 
March, October 900 
April, September 950 
May, August 980 
June, July 1000 



W m-"(December 21st) to  1005 W m-2 (June 21st). These values are valid for 
the Netherlands in its entirety. 

The value of W, t o  be used in any specified month is given in Table 1 .  

3.  Convection 

From the literature [2,3] it is known that the convected heat loss can he 
calculated by the formulas 

and 

respect~vely 

where 
VL = wind velocity normal to line (rn s-l) 
d = conductor diameter (m) 
u ,  = kinematic viscosity of air (m2 s-l) 
k ,  = thermal concluctlvlty of air (CV mpl 'c-') 
O = mean temperature rise of conductor surface (" C) 
The formula W,, has to  be used for 0.1 < Re < 1000, and the formula Wcz is 
valid for 1000 < Re < 50000, where Re = VLcl/vf = Reynolds' number. In 
almost all cases Re exceeds 1000, so that as a rule the formula Wc2 can be 
used. 

The coefficients h, and u f  are dependent on temperature; they are given as 
a function of the average temperature Tf of the air film which forms the 
change-over between the conductor with temperature T, and the surround- 
ing air with temperature T,; therefore Tf = 0.5 (T, + T,). 

The formulas given for W,, and Wc2 are not valid for V ,  = 0; in this case 
the following expression can be used [3,4] : 

WCo = (3.71, ..., 4.14) do 791 2 3  (W rn-.') 

In the following the coefficient 4 has been used: 

W = 4 do.7501.25 
c 0 ( W m-I) 
It is possible to  introduce a drastic simplification of the above formulas 

(only valid for the conditions in the Netherlands), without losing the 
accuracy of the calculation. 

To realize this the following restrictions have been introduced 

0.010 < - d < - 0.025 m for copper conductors - - 
0.015 - < d < - 0.040 m for ACSR - - 
These restrictions, however, apply to practically all the conductors which are 
used in practice. The maximum temperature allowed for the conductors is in 



agreement with the practice abroad, namely 70" C for copper conductors and 
80" C for ACSR. 

The results of the simplification are given in Table 2. Except for V ,  = 0 
the formulas obtained are iinear. The constants iz and p depend on VL. 

Investigations [5,6] have made it clear that varying the angle of attack of 
the wind makes a difference for the local heat transfer. Fig. 1 shows that  in 
the most unfavourable case (angle of attack = 0" ) the heat loss is hardly 
more than 40% of the value in the most favourable case (angle of attack = 

90" ). The values mentioned have been found using a thin taut wire; in 
practice the sag of the conductor will have a favourable influence. In the 
cases with Vl > 1 m s-' it can be stated that W,., is proportional t o  V1 0.6.  

On that basis iFcan be computed that if VL is halved (original value > 2 m 
s-l), W,,, will hk 34% lower. If V: is reduced t o  113 of its original v z u e  
(> 3 m s-l), WCg0 will he 48% lower. 
- 

On the basis of Fig. 1 it can be established which reduction of V1 has the 
same effect as the fact that the prevailing wind is not normal t o  the direction 
of the overhead line (6 f 90") (see Table 3). 

This shows that for a general and simple application of the determination 
of the ampacity as indicated in this article, allowance has to  be made for a 
very small value of 0, if not 0 = 0. 

In view of the fact that the direction of the wind is not constant, i t  may 
be advisable t o  use 0 = 9". When this is done, i t  is safe t o  use in the formula 
for W, an "effective" wind velocity which is one third of the real wind 
velocity. 

Moreover i t  is important to  know the minimum wind velocity for the 
computation of the ampacity. Corresponding t o  the American and German 
standards, the value of 0.6 m s-' normal t o  the conductor has been chosen 
with the restriction that this may only be used when the temperature of the 
air is relatively high. 

TABLE 2 

Simplified formulas Tor )tic 

VI Copper; T ,  = 70nC, 0 010 < d (  0 025 m ACSR, Tc = 80°C, 0.015 -: d - 
( m  s-' ) 0.040 m 
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Fig. 1. Influence of the direction of the wind 

Relatively high temperatures generally appear with the arrival of hot air, 
so with any wind. This is illustrated in Table 4, where a summary of 
maximum temperatures per month is given for the period 1965 to  1970. The 
wind velocity is also included. This information has been gathered from the 
day reports of the KNMI (Royal Dutch Meteorological Institute) covering 
31  measuring points in the Netherlands. The average value of the measured 
wind velocities is 4 m s-l. 

The fact that at relatively high temperatures it may be assumed that 
V ,  > 0.6 m s-I does not rule out the necessity of taking a value of V, 5 0.6 

- 

TABLE 3 

Influence of the  direction of the  wind 

* f is the  coefficient required with which t o  multiply V in order t o  get a "fictive" 
value of VJ . Naturally this "fictive" value is not the  same as the  component of V 
normal t o  the conductor. 



TABLE 4 

Wind velocity at  high ambient temperatures 
~ 

hlo 11 t h  T ~ n u  1 ' Date ;\3c~asuiing point.(s) 

January 
February 
March 
April 
May 
June 
July 
August 

September 

October 

November 

December 

Woensdrecht, Hoek van Holland 
Twente, Eindhovcn, 
Soesterberg 
Twente, Soesterberg * 
Volkel, Eindhoven * 
Twente, IJmuiden * 
Woensdrecht, Zd. Limburg 
Woensdrecht, Zd. Limburg * 
Ypenburg 
De Bilt, Zd. Limburg * 
Eindhoven 
Deelen, IJmuiden 
Zd. Limburg 
Soesterberg, Deelen * 
Volkel, Eindhovcn * 
Twrntc 
Zd. Limburg, Twentc 
Socstcrbcrg 

* The same T,,, at one or more other points 

m s-1 in relevant situations. Though in general there will always be some 
vertical movement of the air even if there is no horizontal movement, the 
condition VL = 0 has not been neglected in this article. 

4. Radiation 

There exist formulas (with slight variations) for calculating the radiated 
heat loss. The essential difference between these formulas can be reduced 
to  a difference in interpretation of the heat radiated to  the outside 
atmosphere. 

In this article the formula of Webs [7] has been chosen: 

where 
u = Stefan-Boltzmann constant = 5.68 X (W m-"K-4 ) 
E = total emissivity of conductor surface 
T ,  = end temperature of conductor (" K)  
Ta = ambient temperature (OK) 

Ts = temperature of the outside atmosphere (" K)  
d = conductor outside diameter (m) 

The above formula makes allowance for a part of W,. which can be radi- 
ated t o  the outside atmosphere (clear weather). This supposition is allowed 



'TABLE 6 

"Maximum" arnbicrtt tempcraturc pc.1- month 

"Maximum" ambient t e m p e r a t u r ~  
T, "rnax" ( r a n d  K r ~ s p  ) 

Jarrtrdry , Febr .ud~>  . Dect~inbcr 10 283 
i\/Iarch, November 15 288 
A p r ~ l ,  Octob

e

r 2 0  293 
May, September 25 298 
June, July. i 'uguat 30 303 

because W, has also been calculated for clear weather, whilst both com- 
ponents eliminate each other almost entirely. 

For the "maximum" air temperature per month in the Netherlands, see 
Table 5. This table has been derived from a publication of the KNMI [B], 
and covers a period of 30 years. The "maximum" temperature means the 
temperature that will generally be the maximum temperature in the month 
indicated. If the temperature rises just slightly above the given value, it will 
have only very little influence on the ampacity. 

After substituting T ,  = 217" K [9]  it follows that: 

This formula has also been very much simplified with due observance of the 
required accuracy. 

W ,  = ( 1 2  O + 940) ~d (ACSR) i (W m-l) 
W ,  = ( 1 2  O + 760) ed (copper) 

Restrictions: T ,  = 343" K (copper) and 353" K (ACSR), respectively. 

5. Ampacity 

All the parts of the heat balance have now been discussed. It is now 
possible t o  compute the ampacity of a certain conductor in a short way. It 
also is possible to  use an even shorter way, because some simplified formulas 
have been developed for W, as a function of VL, in which W, = W, + W, - W,. 
For these simplified formulas see Table 6. 

To obtain these formulas it was necessary to  eliminate the coefficients a 
and E .  Therefore the supposition is made that the conductor has been 
exposed to  the influence of the surroundings (oxidation and pollution). For 
this condition one may use a = E = 0.6 as is done abroad [7,10]. 

It turned out not to  be possible to  use only one formula when VI = 0. A 
better result can be obtained by using two formulas, viz. one for 



TABLE 6 

Simplified formulas for Urt (W m-I ' cC1 ) 

ACSR T ,  -- 80 C , a  = E = 0.6, 
50 G 0 G 100°C; 0.015 < d G 0.040 m 

* Formula valid for > ~ O C .  For T ,  < 5 " ~  use 31.8 d +"0.14 (copperk; 31.2 d + 0.19 
(ACSR). (For  practical use T,  and T ,  are expressed in C instead of K).  

-20°C < T,  .< 5°C and one for 5" C < T,  < 30°C. 
To compute the heat W, = I ~ R -  by a certain current it is 

necessary to  know the AC-resistance at the temperature the conductor has 
reached. It is rather simple to compute this resistance for copper conductors, 
because only the skin effect will have to  be taken into account. This skin 
coefficient (111 is given in Fig. 2 with t/d = 0. 

For ACSR it is necessary not only to make allowance for the skin effect, 
but also for the eddy current and hysteresis losses in the steel core of the 
conductor. The aluminium wires wound around the core in one or more 
layers form a solenoid per layer. Because the current almost entirely flows 
through the length of the wires and only for a very small part from wire to  
wire, this current will have a strong magnetic effect, causing eddy current 
and hysteresis losses. These losses will increase the AC-resistance. 

Investigations [12,13] have found that there is a clear difference between 
conductors with an odd and with an even number of aluminium layers. The 
explanation for this is that the different layers are in general wound in 
opposite directions, so that per two layers the magnetic effect can be 
neglected. This is the reason why it can be stated that for conductors having 
an even number of aluminium layers the only effect to  be considered is the 
skin effect. 

On the other hand the magnetic effect of conductors having only one 
layer of aluminium will be high. However, it is very difficult to  compute this 
effect since it is dependent on the current and on whether the steel is 
saturated or not. 

The manufacturer has to state the AC-resistance as a function of the 
current [14]. For the rest it does not seem probable that this kind of con- 
ductor will ever be used as a phase-conductor in the Netherlands. That is the 
reason why this problem has not been discussed in more detail. 
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Fig.  2. Skin effect curves for round tubular conductors. 

The AC-resistance of ACSR with three layers of aluminium is also depen- 
dent on the current but to  a much lesser extent than for conductors with 
one layer. The value of the AC-resistance of a number of common ACSR- 
conductors with two and three layers, respectively, is given in Table 7. 

The accuracy of the simplified formulas for W, has been tested with the 
conventional formulas. It turned out that the current calculated with the 
simplified formulas for W, (and W, = 1 ' ~ ~ )  is never more than 1% higher and 
never more than 3% lower than the current calculated with the conventional 
formulas. This accuracy for W, mentioned above does not include the situa- 
tion where VL = 0. The values for the current under this condition may be at 
most 5% higher or lower than those calculated with the conventional for- 
mula. 

It is now important to  define the expression "nominal current". It is pro- 
posed to define the "nominal current" as the current that under the condi- 
tions T, = 30°C, Vl = 0.6 m s-l, a = E = 0.6 and maximum solar heat leads to 
the end-temperature of the conductor, being 70" C for copper and 80" C 
for ACSR. In this manner the nominal current has been computed for a 
number of conductors used in the Netherlands (see Table 8). 



ACSR Type Diam. Number R=,, R-IR, R-80 

( X  l o r 3  m )  of layers ( i ~ l k r n )  ( i ? / k m )  
of aluminium 
-- 

251 152 Ostrich 17.28 2 0.236 1.01 0.238 
321185 Ibis 19.20 2 0.196 1.01 0.198 
201224 PNEM 20.34 3 0.159 1.03 0.164 
401240 DIN 21.70 2 0.153 1.01 0.155 
231259 Groningen 21.84 3 0.138 1.03 0.142 
531322 Grosbeak 25.15 2 0.111 1.01 0.112 
371424 SEP 27.94 3 0.085 1.04 0.088 
391457 PGEM 29.98 3 0.079 1 .04  0.082 
631483 Cardinal 30.38 3 0.074 1.04 0.077 
521591 EZH 1,3  33.02 3 0.060 1.04 0.062 
771604 Crackle 33.99 3 0.060 1.04 0.062 
601686 EZH 1,4 35.56 3 0.063 1.05 0.056 

Although it does not seem to be necessary to make an allowance for the 
situation VL = 0 (as one has to  of course for VL < 0.6 m s-I), the percentage 
of ampacity reduction for Vl = 0 is given in Fig. 3. The highest ambient 
temperature used for this calculation is T,  = 25°C. Moreover, the conductor 
temperature can be computed when the conductor is loaded with the 

TABLE 8 

Nominal current 

- - 

Tvpe ol conductor 1110111 (A) 

Copper 70 
95 

120 
250 
185 
300 

ACSR 251152 
321185 
201224 
401240 
231259 
531322 
371424 
391457 
631483 
521591 
771604 
601686 
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Fig. 3 .  Reduction of the ampacity for V = 0 .  

nominal current under the condition of no movement of the air at all. In 
this very unfavourable situation the ACSR conductor 371424 could reach a 
temperature of 100°C. This very unfavourable situation only occurs when 
there is a coincidence of bad conditions, such as absolute calm, high ambient 
temperature, maximum solar heat and maximum current. So it will generally 
be satisfactory to  carry out the computation with VL = 0.6 m s-', though 
one has to remain prepared for the situation described. 

Rating the arnpacity is also possible with the nomograms in Figs. 4 and 5 
(copper and ACSR resp.). Fig. 4 is simpler in design, since the value of R, 
could be combined with the diameter d. 

This is not (exactly) possible for ACSR-conductors. In Figs. 4 and 5 wind 
velocities are given up to  and including 7 m s-I normal to  the conductor. The 
current calculated for Vl = 7 m s-' is about twice the current with Vi = 0.6 
m s-'. For practical reasons it will not be suitable t o  have a current higher 
than two times the nominal one. 

An example (Fig. 4) is the determination of the arnpacity for a 150 mm2 

copper conductor with T,  = 30GC, T ,  = 70°C, VI = 0.6 m s-' and oc = E = 0.6. 
It can be shown that I = 545 A. The simplified formulas give I = 540 A, 
while the conventional method leads to I = 538 A. 

For the ACSR conductor 371424 one can see in Fig. 5, based on T,  = 

10" C, T ,  = 80" C, VI = 3 m s-' and oc = E = 0.6, that I is about 1670 A. The 
simplified method leads to  I = 1664 A, and the conventional calculation 
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Fig. 4. Ampacity for  copper conductors. 

gives the result I = 1674 A. In both cases the deviations are very small. 
As t o  the influence on the final result of the coefficients a and E ,  which 

can be considered equal [ 7 ] ,  it can be mentioned that for a new (not 
oxidized) 150 mm2 copper conductor (all other conditions remaining the 





same as before), the simplified method would lead to  I = 531 A. For the 
ACSR-conductor 371424 one can show that I = 1643 A. The calculation is 
based on a = E = 0.2. It appears that in both cases tho arnpacity is about 
1.5% smaller than in the case where a = E = 0.6. It can be proved that under 
the most unfavourable circunlstances (large d and large O ) ,  the arnpacity of 
new copper conductors is decreased by about 4.596, whilst for ACSR-con- 
ductors the reduction is about 6%. 

As for badly oxidized and contaminated conductors one should use [7] 
a = E = 0.9. The present article does not enter into this problem in any more 
detail. 

Finally, for practical purposes, Table 9 gives a survey of the admissible 
current during the month, based on V, = 0.6 m s-' and a = E = 0.6. The dif- 
ferent "maximum" temperatures mentioned in Table 5 are also considered. 

From Table 9 it can be calculated that the "winter rating" of copper con- 
ductors is about 22% higher than the "summer rating". For ACSR conduc- 
tors the difference is about 18%. Naturally, the different values for T ,  with 
respect to copper- and ACSR conductors respectively show this seasonal 
dependence. 

TABLE 9 

Allowal,le current for  V1  = 0.6 m s-l, a = c = 0 .6  

June,  May, April, March, February,  
July, September, October,  November, January,  
August, D e c e m b e ~  

T "max." ("c) 

Copper 70 
95  

1 2 0  
150  
185  
300 

ACSR 251152 
321185 
201224 
401240 
231259 
531322 
371424 
391457 
631483 
521591 
771604 
601686 



6. Conclusion 

By means of the simplified method of calculation dealt with in this paper, 
it is possible t o  determine quickly the ampacity of 11;HV-overhead iines. 
By doing so this ampacity can be adjusted directly for the prevailing condi- 
tions such as wind velocity and ambient temperature. Although, strictly 
speaking, this calculation applies only to  singular conductors, it may also be 
used for bundle conductors since, 111 general, the mutual thermal influence of 
the sub-conductors can practically be neglected. 
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Summary 

A mathematical model is proposed by which an experimentally deter- 
mined dependence of magnetization on magnetic field can be approximated. 
The model includes a description of major and minor loops, of any order, 
and can he used t o  compute the magnetic behaviour for any sequence of 
magnetic field values. The description can be classified as a model based on 
the use of a relatively small number of parameters and can be applied t o  
serve a variety of purposes. 

1. Introduction 

Simulation by means of a digital computer of the behaviour of systems 
containing magnetic materials with hysteresis requires a programmable 
model of the hysteretic characteristics. A variety of models have been devel- 
oped and published so far, which satisfy a diversity of requirements depend- 
ing on the character of the problem and the desired accuracy. 

The character of the problem will be determined by the field of research 
and by the specific questions to  be answered. For example, one may be 
interested in the dynamic behaviour of electronic circuits containing mag- 
netic elements, in the quasi-static behaviour of electromechanical devices, 
or referring t o  our own work at the Twente University, in the write and read 
process in digital magnetic recording. 

* Now with National Aerospace Laboratory, Amsterdam, The Netherlands. 



With respect to  accuracy, it goes without saying that the more accurate a 
model is, the greater will be its complexity. So accuracy means an increasing 
number of parameters (and time of computing) and a loss of transparency of 
the model, and requires increasing efforts in fitting the model t o  actual 
hysteresis loops. On the other hand, in a less accurate model errors will 
accumulate, to  a large extent, when derived values are used as starting points 
in successive steps. The choice of a model will be a compromise between 
accuracy and simplicity and will be dictated, in the end, by the purpose of 
the user and the computing facilities that are at his disposal. 

Examples of models using a large number of parameters are the one 
proposed by Portigal [I], which approximates the major loop by means of 
cubic splines, and the one proposed by Hay and Chaplin [2],  which con- 
siders hysteretic behaviour as being generated by an aggregation of primitive 
non-interacting elements. 

The proposal of Portigal is a purely mathematical one, very accurate 
indeed but applicable only in cases where a few loops have t o  be described. It 
is impracticable if one desires to  express any possible major or minor loop, 
unless one restricts the spline description to  the major loop and introduces 
an algorithm to  derive minor loops from the major loop. This modification, 
however, results in a minor loop description much less accurate than the 
major loop description and thus gives the model a somewhat unbalanced 
character. The model of Hay and Chaplin is related to  the physical notion on 
which the so-called Preisach model [3]  is based. This physical notion leads 
t o  the expectation that the ability of the model t o  describe major and minor 
loops with great accuracy at the same time is greater than in Portigal's 
approach and will depend on the degree t o  which the model reflects physical 
reality. 

Models containing a small number of parameters have the obvious 
advantage of being transparent and being easy t o  manipulate, and are useful 
when qualitative properties are studied. In the case of simulation of the write 
process in magnetic recording, use is generally made of relatively simple 
models (e.g. see [4-71) which are not very accurate. This choice of simple 
models is partly due to  the fact that they play a role in much bigger and time 
consuming computer programmes and partly perhaps t o  the fact that 
approximations in other parts of the programme do not justify the efforts of 
using very accurate hysteresis models. However, work is moving towards an 
ever increasing degree of sophistication in modelling and programming, 
which makes more complex hysteresis models acceptable and even essential 
when the attention is focused on the effect of the accuracy of the hysteresis 
model itself on the outcome of the simulation, as is the case in our investiga- 
tion. The need was felt therefore to  improve the existing models, this of 
course involving new parameters, but at the same time t o  keep the improve- 
ment within the class of simple models in the sense that a relatively small 
number of parameters is used, which may have a direct or  an indirect physi- 
cal significance. 



i\lthougli our lnvcstigations arcA directed mainly to  magnetic record~ng we 
believe that the model we propose can be used in many other applications as 
~t is an empirical fact that in spite of the great diversity in magnetic. matc.rials 
and drvlces some general characteristics of hysteresis loops are common to 
many of them. 

In thr. following sect~ons wc ~111  dcal mith thc ~n t r l i i s~ r  hifF-l loop What we 
want is a description of the experimentally determined dependence of M on 
H that includes major and minor loops and takes into account the tlme ordtlr 
of the events. We first describe some characteristics of the AZH-loops, then 
give a description of our model and some possible extensions and finally 
clisc~iss some of its properties 

2, Characteristics of MH-loops 

Fig. 1 shows a characteristic MH-loop. A family of first order ascending 
minor loops is depicted, starting from the descending major loop, together 
with a family of second order minor loops which starts from an ascending 
first order minor loop. In characterizing the major loops we anticipate the> 
presentation of our model and follow hlaizieres and Fourquet [8] who 
propose a description by means of four similar hyperbolic parts charac- 
terized by four parameters: the saturation magnetization M,, the coercive 
force H,, the curvature of the hyperbolas p and a parameter R(R 2 0) char- 
acterizing the "shear" of the loop. The major loops are expressed as follows: 

(M, -eM)(H-RM-aI i , )=pM (1) 

with a = +1 for the ascending loop 
a = -1 for the descending loop 

E = +1 for M > 0 
E = - l f o r M < O  

Fig. 1. Characteristic MH-loops (magnetic tape, Philips ER 13)  showing a family of first 
order minor loops (solid lines) and a family of second order minor loops (dashed lines). A 
straight line is shown, connecting the bending points in the first order minor loops. 



Fig. 2. A minor loop is directed between the loops of '  the two preceding orders 1.0 the 
starting point of the preceding order loop. 

This model degenerates to  a set of straight lines for p = 0 ,  while for positive 
increasing values of p eqn. (1)  represents loops with decreasing curvature. 

MH-loops approach the lines M = + M ,  asymptotically. In the original 
model of Maizieres and Fouryuet, BH-loops and $i-loops can also be 
described. 11 fift,h parameter is then used t o  characterize the inclination of 
the asymptotes corresponding to our lines M = + M s .  We prefer the descrip- 
tion with four parameters to keep the formulae as simple as possible. The 
facility to  simulate hysteresis curves which approach saturation along an 
incl in~d asymptote can be added afterwards by an appropriate roation of the 
loop to  he simulated. 

With regard to  the minor loops it is important t o  note that  any minor 
loop is guided more or less by the loops of preceding order. Fig. 2 illustrates 
what we mean by this. The (n  + 2)-th order, loop is directed in the space 
between the two preceding ones and guided to  the point A without inter- 
section of the preceding loops. In the same way an (n  + 3)-th order loop, 
starting at  point P, is directed to B. It is important that  a model reflects this 
property in order t o  prevent instability (see [9]). 

A characteristic which plays an important role in the description of the 
minor loops in our model is the straight line which connects the bending 
points in the first order minor loops (Fig. 1). Of course, it is only an assump- 
tion that this line is straight at  all, but Uilhoorn has noticed that this char- 
acteristic can be observed in practical cases while similar statements can be 
found in the literature [10,11]. We disc~3.s~ this in a later section. Further 
details concerning MH-loop characteristics can also be found in [2] .  

3. Description of the model 

The description of the major loops in our model is taken from Maizieres 
and Fourquet [ 81, (eqn. (1)). This model is sufficiently flexible for our 
purposes and more accurate than other simple models known t o  us (see Sec- 
tion 4). It is a happy coincidence that this model is suitable for a description 
of the minor loops in analytical form. 

For this purpose we introduce the lines clM = N -- aH,  which connect the 
bending points in the first order minor loops. In fact it is only the direction 



Fig 3 T h e  hrs t  order  mlnor  loop (1 + 2 )  is derlved f rom t h e  a scend~ng  malor loop  by 
mult lp l~cat ion from '11 Jf, with the :"~toi K I  - ( d l J  AI,)/(L%I: ,%i'$) 

Fig. 4. A minor  loop of higher order is gcncrated whenever a turning point  (c.,g. l i p )  is 
situated between t h e  last and t h e  precccling one  (Hi,, a n d  Ifi,,.). In  ol.hcr cases (c.g. I&) 
the  MH-locus rc~turns to (a )  minor Ioop(sj  o r  lowci- ordt-r.  

that we need, which is determined by the parameter q. 
The model now runs as follows (see Fig. 3):  first order ascending minor 

loops are derived from the ascending major loop by a multiplication in the 
direction determined by q from a baseline M = M,$. The constant of multi- 
plication K1 can be calculated when the starting point on the major loop is 
known: K, = (MI M,,)/(M; - M,) (see Fig. 3 for the meaning of the vari- 
ables). A second order descending loop is derived in an analogous way. Now 
the multiplication occurs from M = MI as baseline and again in the direction 
of q. It follows that K, = ( M ,  - Ml)/(ML -MI).  A third order loop is 
derived from a first order loop in the same way, and so on. Of course the 
same procedure is used for a sequence of minor loops starting from the 
ascending major loop. 

In general the n-th order loop is derived from the (n - 2)-th loop with the 
value of the multiplicative constant K,  determined by the coordinates of the 
last and the last but one turning point. The description can be completed by 
defining what happens when the H-value of the (n + 1)-th turning point over- 
shoots that of the (n - 1)-th one; in that case the (n - 2)-th minor loop will 
be followed again. Looking at Fig. 3 this means that whenever the third 
turning point is situated to  the left of the first one the MH-locus is on the 
descending major loop again. In Fig. 4 this settlement is clarified for the 
general case in which a field value H, is followed by H, . From P to  P' the 
n-th order loop is followed, from P' to  P"' the (n - 2)-th one and from P"' to  
Q the (n - 4)-th one. 

Analytical expressions for the minor loops can be derived from the expres- 
sion for the major loops, eqn. ( I ) ,  to  read: 

[M,sP,, - e(M -- M:)] [H - R,,(M - M:) + Q,, - a (-l)""~,,] = p(M -- M:) (2) 



with 

P,, = Pn--, K,,; PI  = K1;  P2 = K 2  

Mi: =. M,,-l(l - K,)  + K ,  M:.., ; 1Vl; = aMs(l - K,);  M $  = M1(l  - K 2 )  

R + (P,, - l ) q  R = -  

PI, 

With the help of these recurrence relations all parameters can be calculated 
from the major loop parameters and the coordinates of the turning points 
(which also determine K,). The proof of eqn. (2)  can be given by complete 
induction. Transformation of eqn. (2),  for n - 2, by multiplication by a 
factor K ,  from a baseline M = M,-l in the direction determined by q,  gives 
eqn. (2)  for n. 

This transformation can be expressed by 

Introducing (4) into (2) results in (2) and (3). 
To compute a path in the MH-plane which corresponds with a sequence to  

be simulated a series of H-values of the turning points (H,,  El,, ... etc.) must 
be given. If the model is programmed, a procedure has to  be designed which 
selects the turning points from any sequence of H-values that determine the 
magnetic history of the material to  be simulated. The value of cu in eqns. (2) 
and (3 )  is determined by the starting point: oc = 1 when the starting point is 
on the descending major loop, a = -1 in the other case. The value of E is 
equal t o  the value of e of that part of the major loop from which the minor 
loop part is ultimately derived. The starting situation determines the first 
loop. M I  can be calculated by putting H = H,  in eqn. (1).  The resulting cubic 
equation (in short: AM: + B M ,  + C = 0) has the two roots [-B ? d ( ~ ~  - 
4AC)]/2A. It is easy t o  prove that the correct solution is the root [-B - 
d ( ~ ~  - 4AC)]/2A and that this is consistently valid, regardless of the values 
of a ,  E and the order of the minor loop. (An important point in this proof 
is the observation that the sign of the nominator 2A = ~ E R ,  is equal t o  the 
sign of E.) Next K ,  can be calculated and the first order minor loop can be 
formulated. This cycle has to  be repeated at any turning point: calculate 
M ,  from H, and the (n - 1)-th order minor loop, calculate K, from M, and 
SO on. 

The lines qM = H - a % ,  connecting the bending points of the first order 



Fig. 5. Vatiation of the  parameters N b p  andlor  !lib, results in major loop forms of  great 
diversity. Major loops are shown having diCferent values of Mbp (--5, -3, -1' 1 and 3 
resp.) with all o t h e r  pararneters Sixed ( H h p  = 1.85,  p = 0.2 and R = 0.2). For  reasons 
of  economy t h r  major loops  are drawn one insicle the o thc~r .  

Fig. 6 .  (0) Influence of  variation of 1 (with ill, = 6.45, M b p  = 1.85,  X l b p  = 1.00,  P = 0.2,  
q = 0.1, R = 0.2 and Q = 1 )  o n  a first order  minor loop. Values of A are -0.2; --0.1 : 0 ;  
0 .03  and 0.1 ( loops  f r o m  lef t  to right). ( b )  Effect of varying t h e  value of q (q = -0.2, 
0.01 and 0.19 rcsp. )  o n  first order  minor loops. Fo r  this case h2;. = 6.45, H b p  = 1.85, LQ1;lbp 
= 1.00, R = 0.2, c v  = 1 and 3. = 0 .  

loops, intersect the major loops at  the points M  = 0,  H  = aH, .  This is simply 
so because of the symmetry of our model, the hyperbola parts are all similar 
and fit t o  each other a t  the points just mentioned, The model can be gen- 
eralized, however, t o  represent those cases for which the bending point in 
the major loop no longer can be approximated by a point on the H-axis. We 
found it advantageous to  rcplacc the one parameter H ,  by the two param- 
eters H,, and M b p  (see Fig. 5; bp stands for "bending point") and a t  the 
same time abandon the similarity of the hyperbola branches. This can be 
done without introduction of a second additional parameter. When the 
curvature parameter of the branches having a €  = 1 is denoted by p ,  we take 
the curvature parameter of the branches having = -1 asp '  = p(M,  + M b p ) /  
( M ,  - M,,). In this way the branches having E = +1 and E = -1 fit t o  each 
other a t  the points (cuH,,), (otMbp) with equal slope. In Fig. 5 we demon- 
strate the effect of this additional facility for some characteristic cases, which 
also results in a modified general expression for the loop of order n :  

[M,P,,  - E ( M  - M:)] [ H  - R,,(M - M:) + Q,, - a ( - - l ) r l + l ( ~ b , ,  - RM, , , ) ]  = 

with 



The transformation formulae (3) remain valid for this generalization. 
Another modification can be made by replacing M, by Ms(l -- A )  where A 

is a correction factor. This may give better results in some cases and amounts 
t o  shifting the baselllie from which the first order loops are generated. In 
Fig. 6a we show some results. (In addition, the effect of varying q is depicted 
in Fig. 6b). 

There may be other special purpose modifications t o  improve the model 
for specific applications and it is our impression that these modifications can 
be performed easily starting from the standard programmed version of the  
model. 

4. Discussion and conclusion 

The parameter q plays an important role in the model. The introduction 
of this direction of multiplication leads to  better results in the cases we have 
studied and links up  with data found in the literature. Studies a t  the Tohoku 
[Jniversity of Japan [10,11], on the behaviour of recording material have led 
to  the insight that this direction may have a physical significance and that 
the inclination of the line is affected by particle packing density as a result 
of interaction fields. Their work is directed mainly on  rather square hystere- 
sis loops characteristic for oriented particulate media and for which q < 0. 
We however extend the use of q for values q > 0, which may appear in "lean- 
ing" hysteresis loops. Of course the physical significance of q is not  clear in 
that case but nevertheless there is experimental evidence which justifies the 
use of it. 

One of the advantages of our approach is the capability of the model t o  
represent the effect of shear which may play a role in cases where applied 
magnetic fields are used instead of internal fields. I11 those cases the intrinsic 
MH-curve must be transformed by replacing M and H by M and H + DM (D 
is the shearing factor or demagnetizing factor, determined by the geometry 
of the device). This transformation amounts to  the simple replacement of q 
and R by q + D and R + D in eqns. (1) and (3).  

The proposed procedure for the derivation of minor loops assures stabil- 
ity. The model of Potter and Schmulian [7]  which does not fulfill this 
requirement has been improved by Nishimoto e t  al. [9] t o  obtain stability. 
In fact our procedure is a generalization of the method of Nishimoto applied 
to  the model of Mazieres and Fourquet. 

Our impression is that the model proposed by us combines the advantages 
of preceding simple models while the description of any loop of any order 
can be given in a uniform analytic form which ultimately depends on a 
rather small number of starting parameters. A general statement about the 
accuracy is dangerous however, since the criterion for the accuracy may 
depend on the application. In one case the values of M are desired with great 
accuracy, in another case this may be required for dM/dH, for instance. Our 
preference for the major loop model of Mazieres and Fourquet is based on 



TABLE 1 

Maximumimean ctrror for some simple models and characteristic matt3rials. The numbrrs 
are percentages of the saturation magnetization. (121, i s  the saturation remanence, A f r / , l f S  
is thc siluareness ratio) 
~- --  .. 

Ref. 7 Ref. 6 riel'. 5 Ref. 8 ,\I,./.\l\ 
~ -p-ppp----p---.--. 

yFe203-tape (oriented) 23.619.1 13.6!4.3 10.-1!3.2 6.613.7 0.754 
yFe203-disc (nun-oriented) 15.417.7 11.0/4.9 13.6/8.4 7.713.4 0.406 
Fe-film 4.411.9 18.2/11..1 25.3i16.2 3.411.6 0.302 

the general visual impression of its accuracy which can be expressed quan- 
titatively by calculating the nlagnitude of the deviation in the direction of Al .  
In Table 1 the result,s of such a calculation are presented. For some simple 
models and some characteristic materials the mean and maximum deviations 
between experimental values and "best fit" model values show that, with 
respect to  the criterion mentioned, the Mazieres and Fourquet model is 
generally the most accurate one. 

In conclusion we mention a less agreeable feature of the model. In some 
cases a minor loop may intersect a preceding one in such a way as illustrated 
in Fig. 7. Such a situation may occur in the vicinity of the upper and lower 
parts of the major loop. Even the major loops will intersect each other in the 
generalized form of the model when Mbp > 0 ,  this being generally for large 
values of H. To prevent instability in those regions a safety measure has to  be 
inserted in the model. In our programme we have solved this problem by 
stating that whenever a situation as illustrated in Fig. 7 occurs the MH-locus 
will follow the loop of the preceding order. For Fig. 7 this means that the 
minor loop n + 2 is followed until S is reached, and the loop n + 1 by con- 
tinuation t o  the right. A point of intersection can easily be detected by the 
value of the multiplication factor K,. In the case of Fig. 7 the factor K n + 3  t o  
derive an (n  + 3)-th order loop will have a value of 1 at the point S. When- 

Fig. 7 .  Whenever a minor loop intersects a minor loop of the preceding order, the  trajec- 
to ry  of the latter will be  followed from the point of intersection onwards ( t o  the  right o f  
point S). 



ever a point is found with K ,  > 1 this is an indication that the point is on 
an "overshooting" loop and must be recalculated on the loop of preceding 
order. It must be said that the above-mentioned feature can easily be over- 
come in programlrling and has minor influence 011 the applicability of the 
model. 
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Summary 

It is shown that a numerical integral equation method can be established 
to  solve Laplace's equation in a geometry with a periodic structure. The 
method uses a periodic Green's function and requires less computation time 
than a conventional integral equation technique. 

1. Introduction 

If one has to  solve Laplace's equation V '4 = 0 in a geometry showing a 
periodic pattern in the x direction with period a ,  it is sufficient to  solve the 
equation in a unit cell 0 < x < a. in order to guarantee the periodicity of 
the potential, one has t o  fulfil the conditions that the potential @ and its 
normal derivative V 4 . Z, should have the same values at  x = 0 and x = a for 
points with the same ordinate. The problem is then reduced to an ordinary 
potential problem in a bounded area. This can then be solved numerically by 
an integral equation technique [I-31. However, it is also possible to  
establish an integral equation by using a periodic Green's function with 
periodicity a. The potential is then automatically periodic and the boundary 
conditions at x = 0 and x = a may be dropped. 

2. Integral equation 

For the sake of simplicity, the method will be outlined for the particular 
geometry shown in Fig. 1. The extension to  arbitrary periodic geometries 
with periodic boundary conditions is obvious. The shape shown in Fig. 1 is 



Fig. 1. Simple geometry used to establish an integral equation method with a periodic 
Green's function. 

obviously periodic for arbitrary a values. The analytic solution is known: 

so that the numerical results can easily be checked. 
Jn order to  determine a Green's function with a periodic-character, one 

can proceed in the following way. The Green's function G ( r  lr ')  being the 
potential in 7 caused by a line source in 7, a periodic Green's function can 
easily be obtained as the potential resulting from a periodic array of line 
sources placed at points 7 + k  a ( k  = - -, ... + m).  The Green's function 
is then given as an infinite series which can be summed analytically. The 
result is [4] : 

It is easily verified that (2)  is periodic in the x direction. 
In order t o  establish an integral equation the potential is written as: 

@ ( F )  = p(F1)  G(F IF') dCf 
AA'UUB'  

where p ( r r )  is an unknown function defined along AA' and BB'. If one wants 
t o  utilize the free-space Green's function p  should also be defined along AB 
and A'B'. With the periodic function the boundary conditions on the 
proposed solution (3)  yield 

V ,  = J p@') G@ IF') dC' for 7 E BB' 
A A ' U  RB' 



The expressions (4) and (5) constitute an integral equation for the unknown 
function p(F). Once this function has been determined, the potential Q can 
be calculated by (3  j. 

3. Numerical solution 

In order to  solve the integral equation numerically, the boundaries AA' 
and BB' are divided into rn equal segments with length AC (mAC = a). 
Denoting r, as the centre point of the i-th interval (i = I, ... 2tn) the integral 
equation can be written numerically as: 

2 m I V O  1 = 1, ..., m 
[ O ( i , ~ F ' ) d C 1 + C p , G ~ ? , , ) A C ~ \ 0  i = r n + l ,  ..., 2m pi d 1 - 1  

(6) 
ac, 

1 + l  

(6) is a linear algebraic set which can easily be solved ilumerically in order to  
determine the 2m unknowns pi .  Once these pi's are found, the potential @ 
can be evaluated by: 

2 m  

S ( T )  = C pjG(iI<) AC (7 
.i-1 

For the diagonal elements of the algabraic set, an integration should be per- 
formed in order t o  assure convergence because G(ri 1 ri) = ... These diagonal 
elements can be calculated by: 

By using the product expansion of sin z [5], one obtains: 

In sin z = In z + C in (1 - 
11 = 1 

SO that the diagonal elements are found to  be: 

All the coefficients being known, the algabraic set can easily be solved 
numerically by Gauss' elimination method [6]. 



Fig. 2. Absolute value / Ad / as a function of 171. The upper three curves correspond 
to a = 4 and b = 1 and are calculated for the points x = 1.2, y = 0.2 (curvr a),  D, = 0.4 
(curve h )  and y = 0.6 (curve c). The lower three curves correspond t o  a = b = 1 and are 
calculated for the points x = 0.3, y = 0.1 (curve a),  y = 0.3 (curve b)  and y = 0.5 (curve c ) .  

In Fig. 2 the absolute value of the difference between the exact values 
(eqn. (I), setting V ,  = 1, so that d, varies from 0 to I ) ,  and the numerical ones 
are represented as a function of m for a = 1 and a = 4 (b  = 1). From these 
results, one observes that a good accuracy can be obtained for moderate 
values of m. For points close to the boundary (curve a), the error shows a 
more irregular behaviour, which is a common feature of integral-equation 
methods [7,8]. It is also found that the error increases with a ,  which can be 
easily understood. 

4. Conclusion 

It has been proved that an integral equation method can be constructed 
for a geometry with a given periodicity by using a periodic Green's function. 
The unknown function p should then only be defined along a part of the 
boundary of a unit cell, which reduces the number of unknowns if the 
problem is solved numerically. The computation time will then also be 
reduced. From the numerical data obtained with a specific geometry, one 



concludes that the accuracy is sufficiently high and comparable t o  that oh- 
taincd with ordinary integral equation techniques. 
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The maximum channel capacity of a coaxial cable, given the power of the 
input signal and the power spectral density of the assumed additive white 
Gaussian noise, is derived. 

It is then assumed that the one inner conductor of the coaxial cable is 
replaced by a set of n parallel conductors and that the n transmission modes, 
characteristic for the resulting multiwire cable, are used t o  form n indepen- 
dent communication channels. The maximum channel capacity of a trans- 
mission system built with such a multiwire cable is derived. 

Computational results for n = 1, 2 and 4 show that application of a multi- 
wire cable instead of a coaxial cable can lead to  a system with a higher chan- 
nel capacity or to  a saving of copper for the cable conductors. 

1. Introduction 

Multiwire cables with twisted pairs or star quads as well as coaxial cables 
are well known and extensively used in analog and digital communications. 
The multiwire cable with twisted wires has the advantage of being well suited 
for space division multiplex systems. On the other hand i t  has the disadvan- 
tage of non-uniformity, i.e. the cross-section varies along the cable and there- 
fore this type of cable is of limited importance for high-speed digital trans- 
mission. The coaxial cable has the advantage of being uniform and is there- 
fore convenient for high-speed digital transmission. Besides, contrary t o  the 
cable with twisted wires, the coaxial cable is extraordinarily well suited for 
theoretical treatments, owing t o  the simple rotation-symmetric configuration 
of its cross-section. 



n = l  n.2 n - 3  n s 4  

Fig. 1. Examples of n-wire cables. 

It is the purpose of this paper to  investigate cables that share the advan- 
tages of uniformity of the coaxial cable and of suitability for space division 
multiplex of the multiconductor cable. We get such a cable if we replace the 
inner conductor of a coaxial cable by n parallel conductors which are mutu- 
ally isolated and well spaced. Some examples for different n are depicted in 
Fig. 1. As will be clear from this figure we will denote a cable with n parallel 
inner conductors surrounded by a cylindrical conducting shield as a multi- 
wire cable with n wires, or more briefly an "n-wire cable". It is well known 
that such an n-wire cable can be used to form n independent transmission 
channels in either direction. This stems from the fact that in such a system 
of n + 1 parallel conductors there are in general n independent modes of 
propagation in either direction, corresponding to  the solutions of the 
generalized telegraph equation [l-31. For instance for n = 2 these modes 
are known as the common and the differential mode or as the even and the 
odd mode. Inter-channel interference between the independent transmission 
channels as a result of deviations from the uniformity of the cable can be 
coped with in the same way as with inter-symbol interference; in fact there is 
no principal difference between the two phenomena [4,5]. In a simple digital 
transmission link as well as in complicated long haul systems the transmis- 
sion properties depend mainly on the combination of cable sections and the 
input amplifiers in the receivers that introduce gain at the appropriate points 
in the system. A single section, consisting of a cascade of a cable with its 
attenuation, phase distortion and noise and an amplifier with its amplifica- 
tion and its noise figure, forms a noisy channel with memory. To judge the 
performance of a digital communication system it can be fruitful to  compare 
it with the performance of an ideal system. To this end we can imagine the 
ideal combination of an encoder and a decoder for the given noisy channel 
with memory and use the concept of channel capacity as introduced by 
Shannon [6] to  judge the performance of the system. Berger and Tufts [7] 
call the performance of such an ideal system "the optimal performance 
theoretically attainable" (OPTA). The OPTA of a transmission system that 
follows a df attenuation law was given by Raisbeck [8]. The OPTA of 
coaxial cables was used by Pierce [ 9 ]  t o  compare the performance of differ- 
ent modulation systems. 

In the next part of the paper we first derive the maximum channel capac- 



ity of a coaxial cable and thereupon the maximum channel capacity of an 
n-wire cable. 

In the remainder of the paper we give some representative results of com- 
putation of these capacities and in conclusion try t o  evaluate these results. 

2. The maximum channel capacity of a coaxial link 

The performance of a coaxial cable link can be described by its channel 
capacity in the sense of information theory [6-91. In this treatise we restrict 
ourselves to  power limited channels with additive Gaussian noise. This power 
constraint together with the typical variation of the attenuation of the cable 
with frequency leads t o  a bandwidth constraint in the case of maximum 
channel capacity. The signal will contain no frequencies greater than some 
maximum frequency W. 

2.1. The model 

The model of the transmission system that we wish to  analyse is depicted 
in Fig. 2. The cable is represented by the transfer function H(f). Assume that 
the frequency interval of interest is such that the attenuation law is com- 
pletely controlled by skin effect. Thus 

1 N ( f )  1 = exp {-?zf I '2}  (1) 

The constant h in eqn. (1) depends on the dimensions and the material of 
the cable and is given by 

1 = length of the cable 
r,= inside radius of the outer conductor 
r ,=  radius of the inner conductor 
E = permittivity of the dielectric 
o = conductivity of the conductor material 

To the output of the cable section is added white Gaussian noise with one- 
sided spectral density N. 

Finally there is the signal power P at the input to  the system. This signal 
power P is distributed over the frequency range of interest. If pi (f) is the 

Fig. 2. The model of a single transmission link using a coaxial cable with transfer function 
H ( f ) .  



power spectral density of the input signal and p, (f) the power spectral 
density of the output signal, there exists the relation 

PO (f) = ~ i ( f )  !H(f) 1 

Substituting eqn. (1) into eqn. (3 )  we obtain 

~ i ( f )  = Po(f) e x ~ { h f l ' ~ :  

The input power P is given by 

The channel capacity is given by 

2.2. The optimum input- and output spectral densities 

To maximize the channel capacity C, it is necessary to  distribute the signal 
power P in the proper way over the frequency range of interest. We therefore 
determine the function p0 (f) and, related to  this, p, (f) in such a way that 
the channel capacity as given in eqn. (6) is a maximum under the constraint 
of a constant input power P. This isoperimetric problem can be solved by 
considering the integral 

where g(f) is an arbitrary function o f f  which is continuous and whose 
derivative is continuous in the range of integration; E is a small quantity and 
A - l  is a Lagrange multiplier to be determined for maximum channel capac- 
ity, which is done in the next section. 
Differentiation of eqn. (7) yields: 

d l -  1 - 
dE 

g(f) df - A-' g(f) exp(hfli2) df - = S -,(f)+$f=-T 
0 I+--------- 

N 
0 

For E = 0 in eqn. (8) we have 



Fig. 3. Sketch  of typical Eunctionspo(f') and p i ( f )  according t,o oqns.  (11) and  ( 1 2 )  

The condition for a stationary value of the capacity under the stated con- 
traint is 

Combining eqns. (9) and (10) yields a Sor~nal condition for the power spec- 
tral density of the output signal 

p o ( f )  = h exp i-kfll" - N  (11) 

Substituting eqn. ( 1 1 )  into eqn. ( 4 )  we have 

p , ( f )  = h - N exp { k f l i 2 )  ( 1 2 )  

Fig. 3  sketches the fonn of p0 ( f )  and p,  ( f ) .  It can be seen that these func- 
tions are both monotonically decreasing with increasing f .  

For values of i:fl'"reater that In h/N they are both negative. However, a 
power density function must be non-negative, and therefore, if the input 
power P is assumed to  be finite, an optimum power density function, with 
maximum channel capacity as a criterion, must be zero for frequencies 
higher than a certain finite frequency W and thus the upper limits of the 
integrals in eqn. (7) can be replaced by bv. Obviously this change of the inte- 
gration intervals has no influence on the results eqns. (11) and ( 1 2 )  insofar 
as the frequency interval from 0 to  W is concerned. Thus 

po ( f )  = h exp {-hf1I2j - N > 0 for 0 < f < W 

p o ( f )  = 0 for all f > W 

p , ( f )  = A - N e x p { h f l i 2 }  > 0 for O <  f <  W 

p , ( f )  = 0 for all f > W 

From eqns. ( 1 3 )  and ( 1 4 )  we have 



Flg. 4. Curves of the  input and output  power density functions according t o  eqns. (13) ,  
( 1 4 )  and ( 1 6 )  with W = 4 / k 2  and u = 1. 

Fig. 5. Curves of the input and output  power density [unctions according to eqns. (13), 
( 1 4 )  and (16) with W = 4/1z2 and a = 2. 

Or 

h = aN exp {k W1I2] for a 2 1 

Figs. 4 and 5 sketch the behavior of p, (f) and p,  (f) with a = 1 and with 
a > 1 respectively. 

In the appendix it is proven that with a given input power P the distribution 
of power must be as in Fig. 4, namely with a = 1 t o  obtain the maximum 
channel capacity. 

2.3. The optimum channel capacity 

For optimum channel capacity we have 

h = N exp {k W1I2] 

Substituting eqn. (17) into eqn. (14) we obtain 

p i ( f )  = N{exp(lzW1I2) - exp(hf1l"} for 0 < f < W 

pi( f )  = 0 for all f > W 

Substituting eqn. (18) into eqn. (5) we get 

Substituting eqn. (17) into eqn. (13) we have 

po ( f )  = N[exp {k(W112 - f1I2)) - 11 for 0 < f < W 

p, (f) = 0 for all f > W 





This theoretical value is in close agreement with a measured value of the 
attenuation of this type of cable at a frequency of 10' Hz that shows 17.2 
dB for a length of 100 m. 

Formulae (19) and ( 2 3 )  give implicitly t h t  relation between W and 1 with 
P/N a parameter. And with eqn. (21) the channel capacity can be calculated. 
Fig. 6 shows the bandwith W' as a function of the length with PIN a param- 
eter and Fig. 7 shows the channel capacity C as a function of the length 1 of 
the cable. 

3. The maximum channel capacity of a multiwire cable 

As mentioned in the introduction, an n-wire cable can be used t o  form n 
independent communication channels by taking advantage of the n indepen- 
dent transmission modes in one direction. We will call such an independent 
channel a subchannel. Thus the communication channel that can be formed 
with a multiwire cable consists of a set of n subchannels, each subchannel 
associated with a particular transmission mode. The model that we will use to  
derive the maximum channel capacity of a multiwire cable consists therefore 
of a set of n submodels as depicted in Fig. 8. 

Each particular subchannel has its own transfer function that is deter- 
mined by the attenuation and dispersion of the transmission mode with 
which this subchannel is associated. Again we will assume that the transfer 
functions are completely controlled by skin effect, so that the square of the 
modulus of the transfer function of the j-th subchannel can be described by: 

I Hj(f)12 = exp (24) 

with hi a constant that depends on the dimensions and the material of the 
cable and on the transmission mode j .  

For the sake of simplicity we will assume equal noise power densities N 
for the different subchannels, a reasonable assumption if we think of equal 
temperatures of the conductors and equal noise figures for the amplifiers 
used. 

Fig. 8. The model used t o  calculate the channel capacity of a multiwire cable with n 
parallel conductors in a shield. 



As we want to  compare the performance of an n-wire cable with the per- 
formance of a coaxial cable, the latter being a special case of the former 
with n = I ,  we assume the total available power for a length 1 of the cable 
t o  be constant, independent of n and denote it by P. This power P is sub- 
divided into n parts and each part P, is used for the particular subchannel / 

Thus: 

In agreement with eqn. (21) we find, for the maximum channel capacity of 
subchannel 1 : 

c = '12 w2/3  
r 3 r  1 

with W, given implicitly by: 

which is in accordance with eqn. (19). The noise sources being uncorrelated, 
the channel capacity of the muItiwire cable is the sum of the n subchannel 
capacities that are related t o  the n independent transmission modes. Thus: 

As C, is a function of P,, C is a function of the n powers Pi. 
We now determine the distribution of power over the different subchan- 

nels that results in maximum C by using Lagrange's method of undetermined 
multipliers. A necessary condition for an extremum of C under the constraint 
of constant total power P is: 

g r a d ( C + A P ) = g  (29) 

with h a Lagrange multiplier. 
Because Ci is only a function of the power Pj and because aP/aPj  = 1 the 

condition (29) reduces to: 

ac. 
>+ h = 0 j = 1 ,  ..., n a P, 

Differentiation of eqns. (26) and (27) to  the common parameter W j  yields 

and 

respectively. 



Combination of eqns. (31) and (32) gives: 

dC, 

f l j  
---= {N exp(k, W112)]-7 

With eqn. (33) the condition (30) reads: 

K j  W;l2 = constant = K 

2 N .  
In practical situations the term ---In eqn. (27) can be neglected. 

h.? 
Combination of eqns. (34) and (27) then results in: 

Combination of eqns. (34) and (26) gives: 

C. = l h ~ T 1 ~  
1 3  

4. Computational results 

The calculations are based on the analysis by H. Kaden of cables of the 
kind considered in this paper [ lo ] .  He gives, in the reference cited, formulas 
for the attenuation of the different modes in 2-wire and 4-wire cables. 

From eqn. (I), it follows that the relation between the constant h, and 
the related attenuation per unit of length a ,  of the exited mode is given by: 

To be able to  compare the properties of interest of cables with different 
numbers of inner conductors, we will compare cables with equal outer con- 
ductors. To that end suppose first a coaxial cable with an outer conductor of 
inside radius r ,  and an inner conductor of radius r,. Assume a ratio 3.6 
between the radii of these conductors to  obtain a cable with minimum 
attenuation and consequently maximum channel capacity, given r,. Assume 
further: 

The constant h that determines the transfer function of the coaxial cable fol- 



Fig. 9. The maximum channel capacity C o f  a coaxial cable and the related bandwidth W 
a s a  function of the length I .  ro = 0.5 X m,PIN = 10'' X s - l ,  0 = 5.8 X l o 7  [12m]-' and 
c, = 2.36. 

lows from eqns. (2)  and (38): 

The bandwidth W  and the maximum channel capacity C  are calculated from 
eqns. (19) and (21) respectively and plotted in Fig. 9 as functions of the 
length 1. 

Next we consider a 2-wire cable with the same inside radius of the outer 
conductor as in the previous case. The two independent subchannels are 
characterized by their transfer functions, which in turn are determined by 
the kj's ( j  = 1,2). The constants kj follow from eqn. (37). The attenuations 
cu j  can be expressed in r,, r2 and a ,  the dimensions that describe the cross- 
section of the cable being as depicted in Fig. 10. Following [ l o ]  we derive: 

If k, and k 2  are known, Pj can be calculated from eqns. (25) and (35) and 
thereupon k, W j ,  C j  and C  follow respectively from eqns. (35), (34), (36) and 
(28). 

mode nr. 

I 1  2 

Fig. 10.  The cross-section of' the optimum 2-wire cable and the way in which the conduc- 
tors must be excited t o  form the subchannels. rg  = 5 mm; a = 1.8 mm;  r 2  = 0.81 mm. 



Obviously, the channel capacity C thus calculated is a function of re and a. 
The values of r ,  and a that make C a maximum can be determined and 
appear t o  be: 

The resulting cross-section, as well as the way in which the conductors must 
be excited t o  form the subchannels, is depicted in Fig. 10. The maximum 
channel capacity C as a function of the length 1 of the cable, assuming the 
same PIN, a and E,. as in the previous case of the coaxial pair, is plotted in 
Fig. 11. It is the sum of the two maximum subchannel capacities C1 = C ,  
and C2 = Cd belonging to  the channels formed by the common mode and 
the differential mode. These subchannel capacities and the corresponding 
bandwidths W ,  = W ,  and W 2  = Wd are also plotted in Fig. 11. 

Note that (a) the maximum channel capacity of the 2-wire cable practi- 
cally equals the maximum channel capacity of the coaxial cable; (b) the 
highest frequency W1 is substantially lower than the frequency W for the 
coaxial cable; (c) the total mass of the copper used for the inner conductors 
is 68% of the mass of the copper needed for the inner conductor of the 
coaxial cable. 

Finally we consider a 4-wire cable. Again following [ l o ]  we derive the 
four k,'s: 

In the same way as was done in the case of the 2-wire cable, we can calculate 

0 2 4 6 8 10 

1 (km) 

Fig. 11. The maximum channel capacity of the 2-wire cable, together with the  maximum 
subchannel capacities C ,  and Cd and the related bandwidths W ,  and W d  as functions of the 
length 1 of the cable. The subscripts c and d stand for the common and differential mode 
respectively. 



1 m o d e  nr 

Fig. 12 .  The cross-sextion of the  optimum 4-wire cal~lc. ancl the way in which the  conduc- 
tors must be excitt,d t o  form the subchanneis. ro = 5 m m ;  a = 2.3 nlm and r4 = 0.69 mm.  

P,,  K ,  W,, Cj  and C .  For nlaximum C it follows that r ,  and a are given by: 

r ,  = 0.138 ro 

a = 0.46 ro (43) 

resulting in a cross-section as depicted in Fig. 12. The way to  form the sub- 
channels is also given in this figure. 

The maximum channel capacity C is plotted in Fig. 13. It is again the sum 
of the four subchannel capacities C,-C,. These as well as the corresponding 
W,-W, are also plotted in Fig. 13. 

Note that (a) the maximum channel capacity of the 4-wire cable is sub- 
stantially higher than the maximum channel capacity of the coaxial cable; 
(b) the highest frequency Wl is lower than the frequency W for the coaxial 
cable and the frequency Wl for the 2-wire cable; (c) the total mass of the 
copper for the four inner conductors equals t h ~  mass oC the copper needed 
for the inner conductor of the coaxial cable. 

We now illustrate by an example the performance of the different cables 

Fig. 13. The maximum channel capacity of the 4-wire cable, together with the maximum 
subchannel c a p a c ~ t ~ e s  C1-C4 and the related bandw~dths IZ71-1V4 as f u n c t ~ o n s  of the 
length 1 of the cable. 



described. Assume that a digital transmission system has to  be built for a bit 
rate of 300 Mb/s and with PIN = 10''s-l. With the ideal combination of 
encoder, cable and decoder we can make the distance between neighbouring 
repeaters with the coaxial and with the 2-wire cable 6300 m. The 4-wire 
cable can span a distance of 8100 m. 

The highest frequencies used are, respectively, 26, 15.5 and 7.5 MHz. The 
quantities of copper for the inner conductor of the coaxial cable and the 
conductor pair of the 2-wire cable are 340 and 230 kg respectively for a 
single span. 

5. Conclusion and remarks 

With the channel capacity as a criterion, it can be advantageous to  replace 
the single inner conductor of a coaxial cable by two or more conductors. 
Specifically, if the single conductor is replaced in the described manner by 
two conductors, there results a saving of copper and if four conductors are 
used, there results an appreciable higher channel capacity. A further advan- 
tage is that an increase in the number of conductors results in a decrease of 
the bandwidth, which implies simpler hardware. 

The results derived in this paper suggest one might also investigate cables 
with n = 3, 5, 6, etc. 

Analysis shows that a digital system for a coaxial pair should use a large 
number of levels to be optimum in the sense of maximum bit rate under the 
constraint of constant bit error probability [9,11]. This large number of 
levels, with its inherent technical and economical problems can be evaded by 
using an n-wire cable with parallel conductors instead of a coaxial cable. For 
instance instead of using a coaxial cable and 16 levels, one could use the 4 
independent channels of a 4-wire cable, each particular channel having two 
levels. 

If n-wire cables are applied in P.C.M. systems, it is possible t o  match the 
channels in the sense of their capacities to the significance of the bits; the 
channel with the highest capacity can be used for the most significant bit 
and so on. 

Systems, realized with the n-wire cables, can be treated as multichannel 
systems that are the subject of several papers on multichannel communica- 
tion theory [ 121. 
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Appendix 

In this appendix we prove that for maximum channel capacity the equality 
sign in eqns. (15) and (16) must be chosen. To do so, we consider two differ- 
ent ways to distribute an (.qua1 amount of input power over the frequency 
hand as depicted in Fig. A.1. 

111 the first place we assume 

h = N exp { h  w : ' ~ }  (A.1)  

that has associated with it an input power P ,  and a channel capacity C, corre- 
sponding respectively with eqns. (19) and (21) 

Fig. A.1.  Two different ways of input power frequency distribution. 



In the second place we assume 

X = aN exp {h W?ji2} with a > 1 

Substituting eqn. (A.4) into eqn. (14) we have the power spectral density of 
the input signal in this second case 

pi ( f )  = N {a exp(lz Wii2) - exp(hfli2)} for 0 < f < W, (A.5) 

p i ( f )  = 0 for all f > W, 

Substituting eqn. (A.5) into eqn. (5) we obtain the input power 

Substituting eqn. (A.4) into eqn. (13) we get 

p , , ( f ) = a N e ~ ~ ( l z W ~ ~ ~ - k f ~ ~ ~ ) - - N  for O <  f <  W 2  

p,(f) = 0 for all f > W ,  

And substituting eqn. (A.7) into eqn. (6)  we have 

C 2 3  =?-hWgi2+ W21na 

The condition for equal power in both cases is 

P, = P, 

If we introduce for the sake of simplicity the notation 

b = ~ 1 1 2 w - 1 1 2  and r = hwlI2 1 2  2 

the condition (A.9) reads 

It is clear from eqn. ( A . l l )  that the requirement a > 1 as stated in eqn. (A.4) 
implies 

b >  1 (A. 12)  

Eliminating W, from eqns. (A.3) and (A.10) we obtain 

Comparing eqns. (A.8) and (A.13) we see that C, > C, iff 

a < exp (b3 "3 1 
To show the validity of eqn. (A.14) we expand the exponent in eqn. ( A . l l )  



iil a power series yielding 

(A. 15) 

Expanding the right hand side of eqil. (A.14) in a power series, we have 

Taking the difference between eqns. (A.16) and (A.15) we get 

(A.17) 
Noting that 

we conclude that every term in the sum (A.17) is positive so the sum is posi- 
tive and (A.14) is proved. Therefore the first method of distributing the input 
power is the one that leads to  a maximum channel capacity. 
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Summary 

This paper presents a procedural method for selecting and designing an 
acceptable optimum power system configuration from a group of system 
alternatives, to  be established in a single area or multiarea mode. 

The procedural method developed is based on compiling data obtained 
from load flow calculations with that of the optimum transmission loss 
coefficients matrix [B] for each system, to  come up with an optimum design 
of any power system network in the sixth reference frame. 

Identification of the optimum power network is in terms of the sym- 
metrical resistance matrix as indicated in the following equation: 

[ R ]  = [ K ]  [B]- '  

where 

[R]  is the symmetric resistance matrix 
[ B ]  is the optimum transmission loss coefficients matrix 
[K] is a matrix function of load flow calculation parameters 

By inspection of the [R]  matrices for a group of optimum power system 
alternatives, established under various percentages of total load received, the 
most economically-optimum system can be identified, and a series of matrix 
transformations produce its form in the actual or first reference frame. 

Load flow calculations using the Newton-Raphson method and power 
system optimization have been applied on 23,000-MW capacity of a cen- 
tralized and a mixed centralized-dispersed power systems under all loadings to 
calculate the [K] and the optimum [B] matrices, respectively. Then by eqn. 
(0) above, elements of the [R] matrices reflecting power system representa- 
tion in the power flow frame have been established for all systems and sub- 
sytems, from which the most economically-optimum power network is 



selected relying on the elements of the diagonal [R]  matrices, since they 
represent the direct path from each equivalent power source to  the system 
centroid. 

i t  can be stated that analyzing any arbitrary power system in the power 
flow reference frame according to the method presented in this paper can be 
very economical with respect to consumption of computer time and 
memory, since in this frame, there is a substantially smaller number of total 
power busbars and branches than in the actual power network. 

1. Introduction [I-41 

Electrical power systems are generally represented in conventional form in 
terms of data related to actual generating sources, loads and impedances of 
the interconnecting network. This is the first reference frame as called by 
G. Kron. On the other hand, engineers in a single power area and multiarea 
power pool usually deal with real power of the generating sources and real 
power exchange. 

In situations where prompt and decisive action is needed in comparing 
several power systems of different configurations under a unified constraint, 
it becomes necessary that those systems be expressed and identified in an 
overall power equivalent reference frame. Also, the calculation of economic 
scheduling of generation which relates the generating capacity of individual 
plants to  total generation based on coordinating incremental production 
costs and incremental transmission losses, is carried out in the power flow 
reference frame (the sixth reference frame as called by G. Kron). 

Optimization of power systems from an economic standpoint can proceed 
on the basis of arbitrary interconnecting networks in the power flow 
reference frame subject to certain constraints such as minimum losses, speci- 
fied total generation, specified plant capacity and total received load. 

Determination of the optimum power system network in the sixth or 
power flow reference frame can be followed by a series of transformations 
aimed at representing the optimum system in the actual or first reference 
frame. To compare and analyze from the start several power system alter- 
natives in the actual first reference frame requires excessive computer time 
as well as large memory capacity to absorb all the data. 

The foregoing points out the necessity t o  develop a criterion by which 
power system optimization in the power flow reference frame can be carried 
out using the [B] matrix, power source outputs within their maximum 
ranges, and fuel cost data. Such a criterion was developed earlier [2]  and 
treated successfully on small power systems. 

Based on the solution obtained for the optimum B matrix, coupled with 
data from load flow calculation, a new path for designing the power network 
in the sixth or power flow reference frame will be developed and tested in 
this paper. 



2. Statement of the problem 

Given several optimum power system configurations t o  be ~stablished in a 
single area or multiarea mode, with each system follows the conditions: 

( a )  The system contains rz equivalent generating sources of electromechan- 
ical, c~lectrochem~ra!, solar, thermionlc and nuclear nature, each possclsstng a 
prescribed fuel cost curve, as shown in Fig. 1. 
(6) Each system operates optimally according t o  the coordination criteria 

relating incremental. generation costs and incremental Lransm~sslon losses 
costs, as expressed by eqn. (1) 

where 
X = incremental cost of received power in dollars per MW-h 
P, = power generating capacity of plant 1 in MW 
F, = fuel cost of plant i in dollars per hour 
P, = total transmission losses 

The coordination eqn. (1) is subject to  the following constraints: 
,I 

Q(P,,P, . . .  P , ) = C P , - P , - P , = O  
1 =  1 

where 
P, = given received power (load) 
Bij = elements of the transmission loss matrix 

The [B] matrix is assumed an implicit function of all power sources as indi- 
cated in eqns. (5) and (6) below. 

Eqns. (4) and (5) imply general recognitioil that Bij is strongly connected 

i A  

Fig. 1. Power flow reference frame. 



to  power transfers among generating sources. 
Because Bi j  is considered here an implicit function of power sources, 

hence the total transmission loss PI, is assumed t o  take tiie functional form: 

P, = CC p i ~ , , p i  or, 
i i 

The problem centers on obtaining the optimum power system representa- 
tion in the power flow reference frame in terms of the symmetrical resis- 
tance matrix. The solution will be verified on two systems, namely: 

(1) A totally centralized system with electromechanical and electrochem- 
ical generating units. 

(2) A mixed dispersed-centralized system with electrochemical and elec- 
tromechanical generating units. 

3. Optimal solution for the [B] matrix [1,2,4] 

Rewrite eqn. (1):  

and assuming that a general functional form for the incremental fuel cost 
curve for the power generating sources is linear, such that 

where 

- -  a Fi - incremental fuel cost of plant i in dollars/MW-h 
i)P, 

Fl i  = slope of incremental fuel cost surve 

fi = incremental cost of plant i at zero output, 

Substituting in eqn. (1) from eqns. (6) and (8) together with the limitation 
of dependence stated in eqns. (4) and (5), the following partial differential 
equation is obtained : 

Eqn. (9) can be written as 



where 

P,, R,, and PI are symmetrical matrices. 

Similarly. a compatible partner to eqn. (10) is found and expressed below: 

Eqns. (10) and (11) are two cornpatib!e matrix differential equations, 
written in different functional forms in e q s .  (12) and (13), respectively: 

Eyn. (14) is another compatible differential equation, which can be solved 
for Pi, P,, Bij, 6Bij/6Pi and 6Bij/6Pj by conversion t o  a canonical system, 
presented below: 

where 

Apply eqn. (14) on eqn. (15) to  obtain: 

k 2  is a constant 

Expressions for Q and Z could be secured by solving simultaneously eqns. 
(10) and (11). 

For the purpose of finding the constant h" in eqn. (17), the following 
boundary conditions are secured from eqn. ( I ) ,  



Bi,; = 0 for 

and 

:. from eqn. (17), resulting that h2  = 0 

and now it becomes, 

After solving simultaneously eqns. (10) and (11) for Q and 2, and then 
substituting in eqn. (20), the following solution for Bij  is obtained, 

+ ( 2  hf i  -- 2  h2)Pi + ( 2  X f ;  - 2  h2)PJ] ( 2 1 )  
The above solution for the [B] matrix is based on minimum cost for a 

given received load in terms of optimum scheduling of generation of all 
power sources and fuel cost data. Of course elements of the [B] matrix will 
change under different total received load with a new scheduling of genera- 
tion. 

4. Power flow reference frame [ 3 ]  

Where all real powers are expressed in a frame involving power exchange 
among various equivalent generating sources as shown in Fig. 1.  

The matrix of transformation to the power flow or sixth reference frame 
is known as the loss matrix with general terms given below. 

R- LJ = K 1.1 R. .  11 - Hij ( f l  - f ; )  

Then the total transmission loss P, is expressed as: 

where 

1 
Ki; = vi-q [(I + 8,s;)  cos d i j  + (Si - S,) sin 9ii] ( 2 4 )  

1 
Hi j  = [ ( I  + SiSj) sin c P i j  + (Si - Sj)  cos cPi j ]  

Vi Vi 
( 2 5 )  



= the ratio of load current at bus h to total load current 
RGr L ,  -= resistance between generator z and load lz 
R c ; ~  I,!, = resistance between generator J and load k 
R r ~  = symmetric resistance in the sixth frame 
H,, (fi-f, = could he neglected In a power system where $,, and 

(S,-S,) are small, respectlvely 
s, - ratio of rectctive to real power at bus I 

(1' r 1 = phase angle between buses z and J ,  respectively 
'. Eqn. (11) becomes: 

5. Basis for power system network in the power flow frame [I-3,5] 

The design criterion for an optimum power system of an arbitrary inter- 
connecting network subject to  the constraints of minimum transmission 
losses, specified total received load, and specified plant capacity, is one of 
the objectives of this paper. Such a criterion is based on the calculation of 
the symmetrical resistance matrix in the power flow reference frame. 

Also, a knowledge of the resistance matrices of more than one intercon- 
necting network could serve as the basis for identifying the nature and type 
of the power system, i.e., whether it be a centralized system, a dispersed sys- 
tem or a mixed centralized-dispersed system as far as the locations of the 
power generating sources are concerned. 

The solution of the [B] matrix in terms of power generat,ing sources with- 
in their capacity and fuel cost data was obtained and restated in eqn. (21) 
with the [K] matrix given in eqn. (24). 

Eqn. (30) can be expanded in matrix form and written as follows: 



R, ,  = B~ and so on 
Ks 2 

Bl, n 
Rl,,, =- 

KT, n 

6. Using the diagonal [ R ]  matrices in comparison of power system alternatives 

The overall [ R ]  matrix can be expressed as below: 
r 

I B I ~ I K ~ I  . . . : T ~ ~ I K ~ ~ , ~  

The elements in the matrix of eqn. (34) are the self symmetrical 
resistances of the individual power sources from a reference point, and 
mutual symmetrical resistances among the individual sources, all represented 
in the power flow frame. 

. R  , R . . . R = the self symmetrical resistance of power sources 1, 2, 
3, ..., n with respect t o  a reference point. 

R  R  . . . R  = the mutual symmetrical resistances between power 
source No. 1 with respect t o  power source No. n. 

Calculation of the [ R ]  matrix elements requires the following data: 
(1) Load flow calculations to  secure information for the [K] matrix, 

namely voltage magnitude, phase angle, real and reactive power of each 
busbar. 

(2) Complete establishment of the [B] matrices under all loadings for the 
presumed power system. (i.e. for every value of P,). Application of eqn. (34) 
together with the procedure of calculating the [ R ]  symmetric matrix which 
reflects an optimum power system design in the power flow reference frame, 
was demonstrated for the following two systems. As an example: 

(A) A centralized system of 32 equivalent power source busbars with total 
peak received load of 23,000 MW. 

(B) A dispersed-centralized system of 123  equivalent busbars having the 
same total peak received load of 23,000 MW. 

For the above two presumed systems, load flow calculations were carried 
out on all loadings based on the Newton-Raphson method on the IBM 360 
Computer. 

Also the [B] matrices for all loadings were obtained for the above-men- 
tioned two systems according to  eqn. (21) where in each case P, was taken 
at 6096, 7096, 8096,9096 and 100% of peak received load. 

By compiling elements from the [ K ]  matrices with those of the [ B ]  
matrices for the two systems, elements of the [ R ]  matrices are obtained 
by a simple computer program, run on the RCA 70 machine, the capacity 



of which was quite adequate even for the large number of 123 busbars. 
However, since the number of busbars in the centralized-dispersed system 

is 123, compared t o  32 t o  the centralized system, a unified basis for com- 
parison is obtained from extracting the diagonal elements from the full 
matrix and forming a new diagonal matrix. 

As explained earlier, the elements of the new diagonal matrix have a great 
significance since they represent the symmetrical resistance of each power 
source with rtlspttet to the system centroid or r~ference point, and 11enc.e 
can serve as a justified basis for comparing more than one optimum power 
network m the sixth reference frame. 

7. Results 

Carrying out the procedure explained earlier for the establishment of the 
symmetrical resistance diagonal matrices for systems A and B, under all 
loading conditions, (P, = 60, 70, SO, 90 and 100% of peak load) the follow- 
ing information for 70% base loading is listed as a typical case for other load- 
ings mentioned above. 

Table 1 contains the diagonal elements of the [R] matrix for the 32 
busbar centralized system extracted from the overall much larger [ R ]  
matrix. 

Table 2 contains the diagonal elements of the [R] matrix for the 132 
busbar dispersed-centralized system extracted from the much larger overall 
[R]  matrix. 

(continued on p. 152) 

TABLE 1 

Self-symmetric res~stance matrix for c e n t r a l ~ ~ e d  system 
Values llsted arc l o 6  times their true p.u. values 

- - -- - -- - - - - 

Bus No. 70% L o a d ~ n g  Bus. No  70% Loading 



m o ~ w m e m m ~ m a o , + r n m ~ m m ~  
m a m m m a a m m a a o o o o o o o o  

'diriri.-.Id.-.Id 

o c o c - o o o o o o o o o o m o o o o  
0 0 0 m 0 0 0 0 0 0 0 m F 0 0 ~ v 0 0 0  
0 0 0 @ J O O O O O O O a a O O C 0 0 0  
0 0 0 ~ 0 0 0 0 0 0 0 * c n 0 ~ m o o o  
0 0 0 0 0 0 0 0 0 0 0 ~ ~ 0 ~ ~ 0 0 0  

c - m  e m  
m  



O O O O O O O O O O O O O O O O O O ~ O O O O O ~  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 3 0  
O O O O O O O O O O O O O O O O O O ~ O O O O O ~  
O O O O O O O O O O O O O O O O O O M O O O O O M ,  
~ ~ ~ ~ d d ~ ~ o o o o o o o o o ~ ~ o o o o o ~ ~  

I I 



The diagonal elements listed in Tables 1 and 2 represent the elemental 
resistance path from each busbar in the power flow reference frame to  the 
system centroid. 

The finite elemental values indicated in Table 1 identify the presumed 
centralized mode of this system. 

In Table 2, the elemental non-zero values refer to  those power busbars of 
centralized location maintained in the new system with respect to  total load 
supplied by them, while the zero elemental values refer to  those dispersed 
busbars scattered in the power system at close proximity to  the system 
centroid rendering their resistance path negligible as demonstrated by their 
zero values. 

8. Conclusions 

Economic evaluation, stability, reliability and the overall power system 
security, can be given direct and prompt analysis once the load flow calcula- 
tion and optimum transmission loss coefficients information obtained for 
several power system alternatives, are established on different grounds. 

This paper can support the following conclusions: 
(a)  Optimal form for the transmission loss coefficients matrix as expressed 

in eqn. (21) could be calculated at any fixed percentage of received load P,, 
in terms of optimum capacities of all power sources and fuel cost data. Com- 
puter time required for obtaining the [ B ]  matrix from this method is much 
less than that needed for using the conventional form of the [B] matrix 
which depends on information derived from load flow calculations, such as 
voltage magnitude, phase angle, real and reactive power of all busbars, 
besides the power network constants. 

(6)  An overall [ R ]  matrix for an optimum power system reflecting 
network design in the power flow reference frame can be established for all 
loadings, based on data compiled from load flow calculations and optimum 
[ B ]  matrices. 

(c) A diagonal [ R ]  matrix can be extracted from the overall matrix, t o  
indicate on a smaller scale, (especially in a power system with large numbers 
of busbars) the direct resistive elemental path from each power equivalent 
busbar to the system centroid. 

(d) Inspection of the order of magnitudes of the diagonal matrices under 
all percentages of total received loads for each optimum system can serve as 
a basic criterion for identifying that arbitrary interconnecting network and 
its eventual design in the actual reference frame. 

Therefore, an inspection of Table 1, which lists the elements of diagonal 
matrices for an optimum centralized power system, under all percentages of 
loading, reveals that ail of those elements are non-zero and of sizeable values. 
This implies the feasibility of the optimal form of this centralized system, 
and consequently its design in the first reference frame. 

Also, inspection of Table 2 indicates that all the newly established 



dispersed power bushcars have a zero resistance path with respect to  the 
system referencae p o ~ n t ,  while those non-zero values of thck diagonal matrices 
refer to  the originally existing centralized busbars. Hence this represents 
again thc exact identification and feasibility of the presumed arbitrary inter- 
c.onnecting network for a disperseti-centralized power system and its design 
and physical r

e

alization in the first frame. 
The above procedure of network identification and its physical realization 

for the two optirnuill systems A and B, in fact serves as an example in com- 
paring several power system alternative having different numbers of busbars, 
t o  be established under dlffererit constraints, as meiitioned in the introduc- 
tory part of this paper. 

( e )  Identification of a power system in the sixth reference frame (known 
as the power flow frame) can lead to  system representation in each of the 
other preceding five frames, by applying the corresponding transformation 
matrices given by Kron. In the case of actual optimum power system design, 
its identification in the first reference frame (individual currents and actual 
interconnection) represents the direct operational form. 

(f) Analyzing any power system in the power flow reference frame, can he 
very economical with respect to computer time and memory, since in this 
frame there will be a smaller total number of husbars and a smaller number 
of interconnecting branches. 
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Letter t o  the Editor 

Van der Pol's problem ia  essentially one of those requiring the - holo- 
physical - Aristomodel for its solution. 

A projection of this space model is given in the Figure; it may be 
compared t o  the circuitry used by Tellegen in hls gyrator, wherein an 
inductance in the metallic part of the circuit I converts into a capacitance in 
circuit 11, the circuits being coupled in a plasma p, in which I suffers attenua- 
tion (+) thereby (microphysically) inducing (negative) attenuation in circuit 
11. Besldes the plasma conversion of L into C is also active in the inversion of 
+ into - for the attenuation it introduces; the usual Barkhausen approxima- 
tions cannot be used, nor may understanding of this phenomenon be 
furthered by macro-considerations (the negative resistance in I1 inducing 
oscillations in its own resonances). The negatlve damping mentioned in line 4 
of J.W. Alexander's article (Vol. 1, No. 4) cannot otherwise be found. Apart 
from this remark his calculations are of course beyond question. 

iZ more detailed account of Holophysics and its relation to  Economics 
and t o  the 5 Disciplines treated for Unsolved Riddles, discussed a t  the 27th 
Sept. conference of the Natuur- en Geneeskundig Congres in Amsterdam 
(1975) may be found in the contribution to  ZWO at  the Hague (Korteweg 
and Wynma, unpublished paper). Plasmap may be taken as a Neon tube, 
circuit I as its power, I1 as its parallel capacitance. For a comparable intro- 
duction to  negative friction see also Morse and Fresbach, Methods of 
Theoretical Physics, McGraw-Hill, N.Y., 1953, Vol. I, p. 298. 

L.A.W. van der Lek 
Oud Ade (The Netherlands) 
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