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SYNCHRONOUS MACHINE PERFORMAXCE IMPROVEMENT WITH
DECOUPLED ACTIVE AND REACTIVE POWER CONTROL LOOPS

K. RAJA REDDY and M.P. DAVE
Department of Electrical Engineering, University 0f Roorkec, Roorkee (India)
(Received December 24,1975)

Summary

The synchronous machine-infinite bus system can be regarded as a multi-
input-multi-output control system with the control inputs as changesin exci-
tations and prime mover inpute and the outputs as reactive and active powers.
In general there exists considerable coupling between the inputs and out-
puts. The decoupling of ‘P and &"* control loops not only improves the per-
formance of the system but also simplifies the controller design since the dif-
ficulty of design is closely associated with the degree of coupling between
the variouscontrol loops.

In the present paper the decoupling of active and reactive power control
loopsis achieved by state feedback with measurable states. First, small signal
operation (dynamic) is studied to determine F and G matricesto decouple
the two control loops. The state feedback used for decoupling isalso utilized
to locate most of the closed loop poles at the desired places. The next part
of the paper coversthe transient stability analysis of the decoupled system.
It isshown that decoupling of power control loops improves the dynamic
and transient performance of the system.

1. Introduction

The problem of the decoupling of atime invariant linear system by state
feedback was first considered by Morgan [1]. The necessary and sufficient
conditions for decoupling were proposed by Falb and Wolovich [2]. The
decoupling technique has been applied to flight control and chemical process
control and it is seeking application to power system problems. Nolan et al.
[3] have applied the decoupling technique to the optimization of turbo-



alternator dynamic response. We [4] have applied this technique to decouple
the two control loopsof active and reactive power of aturbogenerator-infi-
nite bus system (under dynamic conditions) without governor and voltage
regul ator.

The main difficulty in designing controllers by state feedback isthat the
state variables used are not directly measurable. Of course Luenberger's
[5] observer can be constructed to estimate the unmeasurabl e states from
the information available. But the addition of a dynamic observer will make
the overall controlled system more complex and unduly sensitive to dis-
turbances and changes in parameters [6]. Generally the machine equations
contain flux linkages as state variables which are not measurable. These flux
linkages can be expressed in terms of measurable quantities by alinear trans-
formation [7]. In thefirst part of this paper the active and reactive power
control loops of a turbogenerator-infinite bus system with regulator and gov-
ernor are decoupled, under dynamic conditions, by measurable state feed-
back.

Good transient response can only be obtained if at least part of the
response occursvery quickly by the direct control of steam flow at a point
close to the turbine. Morgan et al. [8] and Cushing et al. [9] have applied
the turbinefast valving to improve the transient stability. Dandeno et al.
[10]} have found that superposition of supplementary signalson the error
signal to the voltage regulator will improve system stability limits. The feed-
back used for decoupling provides additional signals which are used to con-
trol the voltage regulator and HP turbine inlet vlavesto improve the trans-
ient stability of the system.

The transient stability studies are also made for the following casesto
enable direct comparison to be made with the transient response of the
decoupled system.

(1) Thefast intercepter valving

(2) Combination of (1)and the feedback signals controlling voltage regu-
lator and HP turbine inlet valves.

(3)With conventional excitation control and governor.

The swing curves for the above cases are drawn for different reactive
power loadings. It has been found that the state feedback used for decoupl-
g improves both dynamic and transient performance of the system over a
fairly wide range of operating conditions.

2. System model

The system shown in Fig. 1 consists of a turbogenerator connected to an
infinite bus through double circuit line. The generator isfitted with an auto-
matic voltage regulator with derivative stabilizing circuit. The steam turbine
(Fig. 2) isrepresented by one time constant. The system isrepresented by
the machine performance eyns. (A1)-—(A3) [11] given in Appendix A and
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the following expressions for Q and P, voltage regulator and governor respec-
tively.

Q= v,iq — vai, (1)
P:quq +vdid (2)
Vo = 75t T s (3)
1
s ﬁ—,r—slgvfd (4)
P =t (4, —kp5) (5)
¢ 1 +Tchp ¢ 8

3. Dynamic analysis

If aTaylor seriesexpansion is taken for the egns. (A1)—(A3) and (1)—(5)
about an operating point, the resulting linear perturbation model can be rep-
resented in state space form as

x =Ax + Bu (6)
y=Cx



where

x =[A8, AS, Adeq, Avsq, Avg, AP,]!
u = [Au,, Au,l’

¥y = [AQ, AP]'

A, B and C are constant real matrices.

The state vector X contains d-axis field flux linkage A¢:q which is unmea-
surable. Agsq can be expressed in terms of the field current which is mea-
surable. Therefore we can find a non-singular matrix M [7] which relates the
new state vector z containing all measurable states to the state vector x by
the equation:

2 =Mx

where

2= [AS, AS, Airg, Avpg, Av,, AP,] !

Then

%=Mx + MAM 'z + MBu = Az + Bu

y=Cx=CM'z=Cz

where

A=MAM ' B=MB, C=CM ! (7)

The computation of matrix M is givenin Appendix B. The constant matrices
A, B and C of the system are given by

o0 1 0 0 0 0 | 0 0]
Ay Q22 Az 0 0 1 0 0
M
Z' _ a3 Q3o Q33 A3y 0 0 0 0
0o o0 I O
TX TX TX
0 0 0 Q54 Qs 0 by 0
k
0 - 0 o L 0 1
L Tch Tch ] L Tc_
—~_[Cn O Ci3 0 0
c= | Coq 0 23 0 0 6]

The expressions for the elements of A and C matrices are given in Appendix C.



4. Decoupling of multivariable control systems

Consider alinear time invariant dynamical system S defined by state space
equations:
x =Ax + Bu
(9)
y=Cx
where x is an n-state vector, # is an m-input vector, y is an m-output vector

and A, B, C are constant matrices. The system Sissaid to be decoupled by a
control law

u=Fx+Go (10)

if the B" matrix is non-singular [2].
Where v isa new input vector, ' and G are m X n and m X m constant ma-
trices and

B' =[C;A%B], i=1,2,..,m (11)
d;=minj: C;A'B#0,j=0,1,..,n—1
=n—21if C;A'B =0 for al values of j
C;isthei-th row of C
Then the G and F matrices are given by
G=B"1 (12)

d

F=B"12J M,CA* — A"] (13)
k=0

whered = max d;, My ,k =0,1, ...,d are m X m diagonal matricesand A' =
[C;A%+1],i=1, 2, ..., m.

The above feedback matrix Fincludesthe locationof m+d; +d, + ... dy
closed loop poles at the desired places.

If the B* matrix issingular then the system can be decoupled by insertion
of a precompensator at theinput terminals [12].

5. Transient stability analysis of the decoupled system

Thetransient stability of the system can be improved by employing spe-
cial signals to control the voltage regulator and the steam turbine valves. The
state feedback used for decoupling provides such special signals which are
shown to improve the stability.

The state feedback decoupling arrangement of the system isshown in
Fig. 3. For the transient analysis we assume that the new input vector v will
remain at itsvalue just before the occurrence of the disturbance. The two
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Fig. 3. State feedback decoupling arrangement.

inputsu,, u, (# = Fx) available due to feedback are used to control the vol-
tage regulator and HP turbine steam inlet valves. Realistic restrictions are
imposed on (1)maximum and minimum values of field voltage and turbine
output and (2) rate of increase and decrease of turbine power.

For transient stability analysis of the decoupled system the following
differential and network equations are to be solved simultaneously.

p(d) = pb (14)
P(pS) =[P = P, — D(pd) + AP,] (15)
S xgtxe 1 . V, s :

pliq) = *:1“"*“ .= (Vg —ia) T f’sm 6 (xq—xq) PO (16)
Xqtx, Tt Xqt Xe

P(Vra) = [+ iV, — v, —v, +u)] (7)

P(v,) = - [0, + k (PUra)] (18)

1 _
p(Ap,) = P~ [~k (pd) — APy + u,] (19)
igq — Vi cos &

= (20)
d e

] V,sin 6

o = gy (21)

Ua= Vi Sin 8 — x.ig (22)

Vo= VoS8 + x.ig (23)

v? = v2+ v} (24)

Pu =Uq iq + Udid (25)

6. Numerical example

The procedure and results are illustrated with the help of the following
example. The parameters of the system and the initial operating conditions



at the nominal operating point (0.9 pf lag) are given below [11,13}.

V,=1,P=0.8,M=0.0337,D =0.00945, u = 20, y; = 0.014, k, = 0.05,
Xgq = 2,x,’1 = 0232,xq = 1.7,xe = 018, Vb = 0.9414, 6= 48.20, lfd = vggq -
2387, 7:=6s,7, =0.2s, 7, =2sand 7., =05 s.

6.1 Dyanmic decoupling

The A, B, C matrices of eyn. (8)are calculated for the nominal operating
point. Since the B* matrix calculated using eqn. (11) is singular a precom-
pensator isrequired for decoupling the system. The first order precompensa-
tor [12] has the following state space form:

- 5 A_|rel A_[0 O

A=t01.8=1n o= o=[] 7]

The new state vector X and the matrices A, B and C for the composite sys
tem are given by

a-[8 Bl e B L]c-e 0[] (26)

For the above composite system withry =rg =1l andr; =ry; = 2, we haved,
=d, = 2 and B matrix nonsingular. Hence the system with the precom-
pensator eyn. (26) is decoupled by control law eyn. (10}. Sincem +d; +

d, = 6,only 6 poles out of 7 can be placed at desired locations. The F and
G matrices with the poleslocated at —3, —10 + j4,—4,and —2 * j8, are
calculated using egns. (13) and (12) as

p_[ 8498 —0511 0162 —0.378 10.67 —4.24 —10.92} 1)
—6.43 018 0.044 0267 —83 205 842

o[ 00183 —0.00638
—0.014 0.0101

The decoupled system will have the following closed loop transfer function

[1/(s +3)(s2+20s+116) 0 }
H )"[ 0 1/(s + 4)(s® + 4s + 68) (28)
The seventh closed loop pole which is not affected by state feedback is
located at —0.5.

To investigate the sensitivity of the decoupled system against changes in
operating point, closed loop transfer functions at two operating points (upf
and 0.8 pf lag) are computed using Fand G matrices of eqn. (27).

The unit step responses of the elements of transfer function H(s) (h11,
hi12, haq, hao) at operating points 0.9 pf lag, upf, and 0.8 pf lag are shown in
Fig. 4. The corresponding step responsesfor the original system are given in
Fig. 5. It can be seen from the time responses that the strong coupling term
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Fig. 4. Unit step response of the decoupled system. (a) 0.9 pf lagging; (b) Unity power fac-
tor; (c) 0.8 pf lagging.

hy, of the natural system isreduced to zero at 0.9 pf lag (completedecoupl-
ing) and to avery small value at other operating points.

6.2 Transient stability analysis

The transient stability studies are made for a 3-phase fault at the sending
end of the transmission line. The fault is assumed to be cleared with the dis-
connection of the faulty line by simultaneous operation of circuit breakers

at either end.

Due to the precompensator, we get one more differential equation:

p(z) = ryuvq (29)
h(t) h(t) h(t)
1
hn
h11
hi1t
/
h22 ha2 h22
~ T~— \/\/\—‘
-h21 ¢ -h21 ¢ -ht2
T T T T - ‘t
10 20— 30 0~ 2o—30 hi2
h12
(a) (b) (c)

Fig. 5. Unit step response of the natural system. (a) 0.9 pf lagging; (b) Unity power factor;

(c)0.8 pf lagging.



Uy =ryz

The additional inputs due to feedback are given by

Uy =rav; +ryv,, Wherev = Fx

For transient stability studies, the 7 differential eqns. (14)— (19)and (29)
5
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back used for decoupling (This notation applies to Fig. 7 also).
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Combination of fast turbine valving and feed-



together with network eqns. (20)—(25) are solved simultaneously using the
Runge— Kutta— Gill method [14] with atime step of 0.01s.

The swing curves are drawn for the following cases with v¢g,,., = 6.12
pu and Usgmin = 0.

(1) Additional inputs due to feedback controlling voltage regulator and
HP turbineinlet valveswith the following restrictions: P; .. = 0.8 pu,

P min = 0.56 pu (itisassumed that the HP turbine controls 30% of the total
turbine output), turbine power rate of decrease = 1 pu/s and rate of increase
= 0.1 pu/s {13].

(2) Turbine fast valving using turbine power response as shown {8] in Fig.
2 with Ty = 0.1s.

(3) Combination of (1)and (2)

(4) Using conventional excitation control and governor.

To investigate the effect of changesin theinitial operating conditions on
the transient stability, the swing curves for the above 4 casesare drawn (Fig.
6) for the following reactive power loadings with P= 0.8 pu.

(a) Nominal operating point 0.9 pf lagging (Q = 0.3855 pu) with FCT =
0.3s.

(b) Unity power factor (Q= 0) with FCT = 0.29 s.

(¢)0.9 pf leading (Q = —0.3855 pu) with FCT = 0.23 s.

The terminal voltage recovery curves at the nominal operating point (0.9
pf lag) for the above 4 casesare shown in Fig. 7.

It isobserved from Fig. 6 that the natural system, which is unstable, is
made stable by the additional signals due to feedback controlling the voltage
regulator and the HP turbine inlet valves. It can be seen from the swing
curves that the maximum rotor angle 6 during first forward and backward
swingislessfor the decoupled system than the fast turbine valving. Greater

V)
114
104
081
061

0.4+

0.2+

o4 o8 12 6 20
Fig. 7. Terminal voltage recovery curvesat 0.9 pf lagging.



improvement in stability limit can be obtained by the combination of the
fast valving and the feedback for decoupling. Thisis expected because the
combination makesit possible to bring the entire output of the turbine
under the control of supplementary signals. From Fig. 7, it can be seen that
the voltage recovery curve for the decoupled system is better than for the
other cases.

7. Conclusions

Under dynamic conditions, the state feedback used for decoupling the
control loops of active and reactive power helpsin reducing the coupling
present between the two control loops to zero at the nominal operating
point and to avery small value at other operating points. The state feedback
also helpsin locating most of the closed loop poles at the desired locations.

Under the transient conditions, the feedback used for decoupling provides
additional signals which improve the stability over afairly wide range of
initial operating conditions. The relative improvement in the stability limit
will depend upon (L)Xhe rate of increase and decrease of turbine power, (2)
the upper and lower limits of turbine power, and (3) the feedback matrix F.
The transient analysis conducted also revealed that greater improvement in
stability limit can be achieved by combining the state feedback with the tur-
bine fast valving.

Thusthe state feedback used for decoupling is having an over-all beneficial
effect on the system performance, both under dynamic and transient condi-
tionsover areasonably wide operating range.
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List of symbols

®a , g = d-axis and g-axisflux linkage
ia, g = d-axis and g-axis components of armature current



bta = d-axisfield flux linkage

Vg, Uq = d-axis and g-axis components of terminal voltage V;
Vb = Infinite busbar voltage

Utg = Equivalent field voltage

V, = Voltage regulator reference voltage

U = Derivative stabilizing signal

Xg, Xq = d-axis and g-axis steady state reactances.
xq = d-axis transient reactance

x, = Equivalent transmission line reactance
Ts = Open circuit field time constant

Tx = Exciter time constant

Ts = Stabilizing loop time constant

Teh = Steam chest time constant

M = Voltage regulator open loop gain

Ms = Gain of derivative stabilizing loop

ky = Speed governor loop gain

D = Damping constant, including effect of damper circuits
M = |nertia constant

P Q = Active and reactive power at generator terminals

P, = Turbine power output

P, = Electrical output of generator

Uy = HPinlet valve actuating signal

Uy = Exciter actuating signal

HP, LP, IP = High pressure, low pressure and intermediate pressure
1) = Rotor angle

pu = Per unit

S = Laplace transform variable

pf = Power factor

P = Differential operator d/d¢

FCT = Fault clearing time

A = Used for linearized quantity

X = State vector

y = Output vector

u = Control input vector

Appendix A

The flux linkage equations are given by

®sa 1 —(xq—xy) 0 | |isa
$a | =1 —xq 0 | |ig (A1)
dq 00 —Xq| |iq



The voltage equations are given by

vffﬂl 1 +7p —(xq —xq)7p 0 0' ["ifd
= 0 [ ld (A2)
qu 1 —Xq Ll

vq = V), cos § + .y

va= Vy, SIN 6 — x.i, (A3)
vt = vd + v
Appendix B

Calculation of transformation matrix M

For small signal operation, from egns. (A1)—A3), we have

Aigq = [(xq —x4)/Xa| Vi, sin 8 A 4 (Xa/Xa) A ¢ta
=m3; Ad+m3z3 Agea

The non zero elementsof M aremy, = mog =MmMyy = Mzs = Mgg = 1
Mgy = (xq —xy) Vi, SN 8/Xy, my3 = Xq/Xgq

where Xy = xq+ xe, X q= Xq + X
Appendix C

Elements of A and C matrices

1 A B — Ax 1
@21 *M[ 17— Aymg /my3], ase = —D/M, a, =57 M
az = %(mssAs Agmgy), a3y = My, Q33 = Ay/Ts, Q34 = M33/Ty
_ M _ 1 MM MM
‘154*_7‘.:7.—){’055“"7.5 77:7‘5’ 51_7’sz

Ci1 = A5 —Ag mg1/m33, Cy3 = Ag/m3s3, Co1 = A7 — Ag mgy/m3s,
Coz = Ag/mgz

where A; to A, are given by

Vi . Vi .
A= E(ff)q +iqxg) sin & X;((bd +igXy) cos b
_IgXe X
AZZL* T A= —

Vi
As= —— (x —xy4)siné
Xa



Vi, sin § o, Vy cos 6 .
uﬁ,: X.':l (Uq_ldxd)'—‘—‘X;—‘(Ud"'quq)
Uy tigX, Ug + igXe
A6:°L—,A8= —_—
Xq X4
V, cos 6 _ Vysin 6 o
7= “—X;— (vq *+iaxq) T(Ud — Ig%q)

where X = Xq tx,
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A SIMPLE METHOD OF DETERMINING THE AMPACITY OF
EHV-OVERHEAD LINES

M.J. VOETEN
N.V. KEMA, Arnhem (The Netherlands)
(Received June 8,1976)

Summary

The current-carrying capacity (ampacity) of overhead linesisfirst and
foremost athermal problem. This question has been dealt with in severa
articles, but, asfar asis known, there is no method which provides a simple
solution. In the present article, however, a method is given by which one can
easily find the ampacity under varying weather conditions such as wind
velocity and ambient temperature.

1. Introduction

The calculation of the ampacity of overhead linesisin fact a purely ther-
mal problem, the production of heat being caused by the presence of an elec-
trical current and sunshine, whereas the removal of heat occurs by convec-
tion and by radiation. As soon as the removal of heat equals the production,
acondition of equilibrium exists with a constant conductor temperature.
Then the following formula applies:

I’R_+W,=W_,+ W,

where

I = admissible current

R__ = AC-resistance at the attained temperature
W, heat absorbed from sunshine

w

W,

i

heat removed by convection
= heat removed by radiation

Beginning with a particular final conductor temperature it is possible to



determine at different weather conditionsthe values of the components W,
W. and W, for the conductor considered. After that the Joule losses can be
determined and thus the admissible current. In the following the different
componentswiil be discussed separately.

2. Solar heat

The amount of heat received by aflat surface normal to the sun's rays
depends very much on the clearness of the atmosphere, the solar altitude and
the nature of the surface. From measurements [1] it is known that the
maximum heat received by a black surface at sealevel (H, = 90°) can be
about 1040 W m 2. The solar heat absorbed by a conductor can be calcul ated
using the formula

W,=adW,sn6  (Wm™1)

where

a = solar absorption coefficient of the conductor

d = conductor outside diameter (m)

Wa = solar heat absorbed by astandard surface normal to the sun's rays
(Wm™)

§ =arccos{cos H, X cos(Z.—2Z,)}

where

H, = solar altitude

Z. =azimuth of the sun

z, = azimuth of the conductor

Starting from the most unfavourable situation (Z.—Z, = 90°) one can
show § = 90°. Hence the formula for W, becomes
W,=adW,

W, dependson H, and varies at sealevel and at altitude 52° north from 575

TABLE1
Maximum solar heat per month

Month Wa (Wm™)
January, December 700
February, November 800
March, October 900
April, September 950
May, August 980

June, July 1000




W m ™2 (December 21st) to 1005 W m ™2 (June 21st). These values are valid for
the Netherlands in its entirety.
Thevalue of W, to be used in any specified month isgiven in Table 1.

3. Convection

From theliterature [2,3] it is known that the convected heat loss can he
calculated by the formulas
V,d 0.52

W.p = {1.01 +1.35 ST k.0 (Wm™)
f
and
V,d 0.60
We,=0.75 — ko0 (Wm™h),
f
respectively
where
v, = wind velocity normal to line (m s7hH
d = conductor diameter (m)
v, = kinematic viscosity of air (m?s™")
k, =thermal conductivity of air (Wm™ ' °C™1)
§ = mean temperature rise of conductor surface (°C)

The formulaW.; hasto be used for 0.1 < Re< 1000, and the formulaW,; is
valid for 1000 < Re < 50000, where Re = V,d/v; = Reynolds' number. In
almost all cases Re exceeds 1000, so that asarule the formula W,., can be
used.

The coefficients k; and v, are dependent on temperature; they are given as
afunction of the average temperature T of the air film which forms the
change-over between the conductor with temperature T, and the surround-
ing air with temperature 7T, ; therefore T; = 0.5 (T, + T).

The formulas given for W, and W_, are not valid for V, = 0; in this case
the following expression can be used [3,4]:

W.o = (3.71, ..., 4.14) d0 7°9! 2° (Wm™1)
In the following the coefficient 4 has been used:
WCO:4dO.7501.25 (VV mvl)
It is possible to introduce adrastic simplification of the above formulas
(only vadlid for the conditionsin the Netherlands), without losing the

accuracy of the calculation.
To realize this the following restrictions have been introduced

0.010< d < 0.025 m for copper conductors
0.015 < d < 0.040 m for ACSR

These restrictions, however, apply to practically al the conductors which are
used in practice. The maximum temperature allowed for the conductorsisin



agreement with the practice abroad, namely 70" C for copper conductors and
80" C for ACSR.

Theresults of the simplification are given in Table 2. Except for V, =0
the formulas obtained are iinear. The constants £ and p depend on V.

Investigations [5,6] have made it clear that varying the angle of attack of
the wind makes a difference for the local heat transfer. Fig. 1. showsthat in
the most unfavourable case (angle of attack = 0°) the heat lossis hardly
more than 40% of the value in the most favourable case (angle of attack =
90°). The values mentioned have been found using a thin taut wire; in
practice the sag of the conductor will have a favourable influence. In the
caseswith vV, > I ms™'it can be stated that W, is proportional to V%6,
On that basisit can be computed that if V, ishalved (original value> 2 m
s71), Wego Will be 34%lower. If V, isreduced to 1/3 of itsoriginal value
(> 3ms™h), Wego Will he 48%lower.

~Onthe basis of Fig. 1it can be established which reduction of V| hasthe
same effect asthe fact that the prevailing wind is not normal to the direction
of the overhead line (8 # 90") (see Table 3).

This shows that for a general and simple application of the determination
of the ampacity asindicated in thisarticle, allowance hasto be made for a
very small value of g, if not§ = 0.

In view of the fact that the direction of the wind is not constant, it may
be advisable to use 3 = 9°. When thisisdone, it issafe to usein the formula
for W, an " effective™ wind velocity which isonethird of the real wind
velocity.

Moreover it isimportant to know the minimum wind velocity for the
computation of the ampacity. Corresponding to the American and German
standards, thevalue of 0.6 ms™! normal to the conductor has been chosen
with the restriction that this may only be used when the temperature of the
ar isrelatively high.

TABLE 2
Simplified formulas for W,

V) Copper; T, =70°C;0010< d < 0025m ACSR, T, =80°C;0.015< d -~
(ms™1) 0.040 m

We (Wm™1) k We (Wm™1) p
0 (8.3d +0.046) x 0125 (7.5d+ 0.062) x 0125
0.6 (32.0d +0.50) x 0 (24.0d+0.64) »« 0
1 (87.3d+0.71) x 0 (38.6d+0.63) x 0 xp 1.00
2 (69.8d+0.75) x 0x k 1.00 (38.6d+0.63) x 0 xp 1.52
3 (69.8d+0.75) x 0 x k 1.28 (38.6d+0.63) x0xp 1.93
4 (69.8d+0.75) x 0 x k 1.52 (38.6d+0.63) <0 xp 2.30
5 (69.8d+0.75) x 0 x k 1.73 (386d+063) x0xp 2.63
6 (69.8d+0.75) x 0 x k 1.93 (38.6d+0.63) x0xp 2.93
7 (69.8d+0.75) x 0x k 212 (38.6d+0.63) x0xp 3.21
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Fig. 1. Influence of the direction of the wind

Relatively high temperatures generally appear with the arrival of hot air,
so with any wind. Thisisillustrated in Table 4, where a summary of
maximum temperatures per month is given for the period 1965 to 1970. The
wind velocity is also included. Thisinformation has been gathered from the
day reports of the KNMI (Royal Dutch Meteorological Institute) covering
31 measuring points in the Netherlands. The average value of the measured
wind velocitiesis4 m s7t,

The fact that at relatively high temperaturesit may be assumed that
V, > 0.6 ms™! does not rule out the necessity of taking avalue of V, < 0.6

TABLE 3
Influence of the direction of the wind
B(°) We/Weoo r*

9 0.52 1/3
23 0.66 1/2
36 0.78 2/3

* § is the coefficient required with which to multiply V in order to get a ' fictive"
value of V,. Naturally this ' fictive" value is not the same as the component of V
normal to the conductor.



TABLE 4
Wind velocity at high ambient temperatures

Month Timax v Date Measuring point(s)
January 14 3 ... 4 29-1-"67 Woensdrecht, Hoek van Holland
February 14 7 ... 10 22-2-'66 Twente, Eindhovcn,
March 25 5 29-3-'68 Soesterberg
April 29 3.5..... 5 21-4-°68 Twente, Soesterberg *
May 30 3.5 ..... 5 13-5-’69 Volkel, Eindhoven
June 30 1 ... 4.5 10-6-’66 Twente, |IJmuiden *
July 34 4 . 5.5 2-7-68 Woensdrecht, Zd. Limburg
August 31 2.5 ... 4 13-8-’66 Woensdrecht, Zd. Limburg *
0.5 1-8-67 Y penburg
2.5 ... 5 2-8-'69 De Bilt, Zd. Limburg *
September 28 3 26-9-°67 Eindhoven
4 ... 5.5 12-9-°69 Deelen, | Jmuiden
October 23 2 6-10-'69 Zd. Limburg
1 ... 3.5 9-10-’69 Soesterberg, Deelen *
November 18 1 ... 3.5 7-11-'65 Volkel, Eindhovcn *
2 6-11-'66 Twrntc
1.5.... 2.5 1-11-'68 Zd. Limburg, Twente
December 13 15 5-12-65 Socstcrbcerg

* The same Tmax at one or more other points

m s~1 in relevant situations. Though in general there will always be some
vertical movement of the air even if thereis no horizontal movement, the
condition V| = O has not been neglected in thisarticle.

4. Radiation

There exist formulas (with glight variations) for calculating the radiated
heat loss. The essential difference between these formulas can be reduced
to adifferencein interpretation of the heat radiated to the outside
atmosphere.

In thisarticle the formula of Webs [7] has been chosen:

W, = 0end{0.75 (T,* — T,%) + 0.25 (T.* — T.*)}  (Wm™1)

where

o = Stefan-Boltzmann constant = 5.68 x 10™® (W m™2°K™)
€ = total emissivity of conductor surface

T, end temperature of conductor (°K)

d

o

T. = ambient temperature (*K)

= temperature of the outside atmosphere (°K)

= conductor outside diameter (m)
The above formula makes allowance for a part of W, which can be radi-
ated to the outside atmosphere (clear weather). This supposition is allowed

73



TABLE 6

"Maximum™ ambient temperature per month

Month "Maximum' ambient temperature
T, “max” ( Cand Kresp)

January, Fel@uary . December 10 283
March, November 15 288
April, Octob r 20 293
May, September 25 298
June, July. August 30 303

because W, has also been calculated for clear weather, whilst both com-
ponents eliminate each other almost entirely.

For the " maximum™ air temperature per month in the Netherlands, see
Table 5. This table has been derived from a publication of the KNMI [8],
and covers a period of 30 years. The ""maximum' temperature means the
temperature that will generally be the maximum temperature in the month
indicated. If the temperature rises just dightly above the given value, it will
have only very little influence on the ampacity.

After substituting T, = 217°K [9] it follows that:

Tc )4 (Ta )4 } —1
W,.=17.84 ed (100 —0.75 1060 ~ 5.54} (Wm™ ")

Thisformula has also been very much ssimplified with due observance of the
required accuracy.

W, = (120 + 940) ed (ACSR)

} (W m™Y)
W, = (1268 + 760) ed (copper)

Restrictions: T, = 343°K (copper) and 353°K (ACSR), respectively.
5. Ampacity

All the parts of the heat balance have now been discussed. It is now
possible to compute the ampacity of acertain conductor in a short way. It
also is possible to use an even shorter way, because some simplified formulas
have been developed for W, asafunction of V,, in which W, = W, + W, — W,.
For these simplified formulas see Table 6.

To obtain these formulas it was necessary to eliminate the coefficients a
and ¢. Therefore the supposition is made that the conductor has been
exposed to the influence of the surroundings (oxidation and pollution). For
thiscondition one may usea = ¢ = 0.6 asisdone abroad [7,10].

It turned out not to be possible to use only one formulawhen vV, = 0. A
better result can be obtained by using two formulas, viz. one for



TABLE 6
Simplified formulas for W, (Wm™ 1! °C™1)

5 Copper. T, =70°C;a =€ =0.6; ACSR 7,=80 C,a=¢ = 0.6,
(m s_l) 40 <6 <90°C;0.010 <d < 0.025m 50< 8§ <100°C;0.015<d < 0.040m
0 26.9d + 0.12 * 27.7d + 0.18 *

0.6 35.6d + 0.50 30.5d + 0.64

1 40.9d +0.71 45.1d + 0.63

2 73.4d+0.75 65.2d + 0.96

3 92.9d + 0.96 81.0d +1.22

4 109.7d +1.14 95.3d +1.45

5 124.4d +1.30 108.0d + 1.66

6 138.3d +1.45 119.6d + 1.85

7 151.6d + 1.59 130.4d + 2.02

* Formulavalid for T, > 5°C. For 7, < 5°C use 31.8d + 0.14 (copper); 31.2d + 0.19

(ACSR). (For practical use T, and T, are expressed in °C instead of °K).

—20°C< T,< 5°Cand onefor 5'C< T, < 30°C.

To compute the heat W, = I°R__ produced by a certain current it is
necessary to know the AC-resistance at the temperature the conductor has
reached. It israther simple to compute this resistance for copper conductors,
because only the skin effect will have to be taken into account. Thisskin
coefficient [11] isgiven in Fig. 2 with t/d = 0.

For ACSR it is necessary not only to make allowance for the skin effect,
but also for the eddy current and hysteresislosses in the steel core of the
conductor. The aluminium wireswound around the corein one or more
layers form a solenoid per layer. Becausethe current almost entirely flows
through the length of the wiresand only for avery small part from wire to
wire, thiscurrent will have a strong magnetic effect, causing eddy current
and hysteresis losses. These losses will increase the AC-resistance.

Investigations [12,13] havefound that there is a clear difference between
conductors with an odd and with an even number of aluminium layers. The
explanation for thisis that the different layers are in general wound in
opposite directions, so that per two layers the magnetic effect can be
neglected. This is the reason why it can be stated that for conductors having
an even number of aluminium layers the only effect to be considered is the
skin effect.

On the other hand the magnetic effect of conductors having only one
layer of aluminium will be high. However, it isvery difficult to compute this
effect since it isdependent on the current and on whether the steel is
saturated or not.

The manufacturer has to state the AC-resistance as afunction of the
current [14]. For therest it does not seem probable that this kind of con-
ductor will ever be used as a phase-conductor in the Netherlands. That isthe
reason why this problem has not been discussed in more detail.
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Fig. 2. Skin effect curves for round tubular conductors.

The AC-resistance of ACSR with three layers of aluminium isalso depen-
dent on the current but to amuch lesser extent than for conductors with
one layer. Thevalue of the AC-resistance of anumber of common ACSR-
conductors with two and three layers, respectively, isgiven in Table 7.

The accuracy of the simplified formulas for W, has been tested with the
conventional formulas. It turned out that the current calculated with the
simplified formulas for W, (and W, = I?R__) is never more than 12digher and
never more than 3% Ilower than the current calculated with the conventional
formulas. This accuracy for W, mentioned above does not include the situa-
tion where V| = 0. The valuesfor the current under this condition may be at
most 5%higher or lower than those calculated with the conventional for-
mula.

It is now important to define the expression " nominal current™. It is pro-
posed to define the ""nominal current' as the current that under the condi-
tions7T, = 30°C, V, = 0.6 ms™!, o = ¢ = 0.6 and maximum solar heat leads to
the end-temperature of the conductor, being 70°C for copper and 80" C
for ACSR. In this manner the nominal current has been computed for a
number of conductors used in the Netherlands (see Table 8).



TABLE 7
AC-Resistance

ACSR Type Diam. Number R_go R-/R. R-g0
(X 1073 m) of layers (2/km) (22 /km)
_of aluminium
25/152 Ostrich 17.28 2 0.236 1.01 0.238
321185 Ibis 19.20 2 0.196 1.01 0.198
20/224 PNEM 20.34 3 0.159 1.03 0.164
401240 DIN 21.70 2 0.153 1.01 0.155
23/259 Groningen 21.84 3 0.138 1.03 0.142
531322 Grosheak 25.15 2 0.111 1.01 0.112
371424 SEP 27.94 3 0.085 1.04 0.088
391457 PGEM 29.98 3 0.079 1.04 0.082
63/483 Cardinal 30.38 3 0.074 1.04 0.077
52/591 EZH 1,3 33.02 3 0.060 1.04 0.062
771604 Crackle 33.99 3 0.060 1.04 0.062
60/686 EZH 1,4 35.56 3 0.063 1.05 0.056

Although it does not seem to be necessary to make an allowancefor the
situation V, = 0 (asone hasto of coursefor V, < 0.6 ms™'), the percentage
of ampacity reduction for V, = Oisgivenin Fig. 3. The highest ambient
temperature used for thiscalculation is T, = 25°C. Moreover, the conductor

temperature can be computed when the conductor isloaded with the

TABLE 8

Nominal current

Tvpe of conductor Lhom (A)
Copper 70 330
95 405
120 465
150 54G
185 615
300 845
ACSR 251152 495
32/185 555
20/224 620
40/240 650
23/259 680
53/322 790
37/424 920
391457 965
63/483 1010
521591 1150
771604 1160
601686 1240
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nominal current under the condition of no movement of the air at al. In
thisvery unfavourable situation the ACSR conductor 37/424 could reach a
temperature of 100°C. Thisvery unfavourable situation only occurs when
there isacoincidence of bad conditions, such as absolute calm, high ambient
temperature, maximum solar heat and maximum current. So it will generally
be satisfactory to carry out the computation with vV, = 0.6 ms™!, though
one has to remain prepared for the situation described.

Rating the arnpacity is also possible with the nomogramsin Figs. 4 and 5
(copper and ACSR resp.). Fig. 4 issimpler in design, since the value of £
could be combined with the diameter d.

This isnot (exactly) possible for ACSR-conductors. In Figs. 4 and 5 wind
velocitiesare given up to and including 7 m s™* normal to the conductor. The
current calculated for ¥, = 7 ms~! isabout twice the current with V, = 0.6
m s~!, For practical reasonsit will not be suitable to have a current higher
than two times the nominal one.

An example (Fig. 4) is the determination of the arnpacity for a 150 mm?
copper conductor with T, = 30°C, T, = 70°C, V, =0.6ms ' and a = ¢ = 0.6.
It can be shown that | = 545 A. The simplified formulas give |l = 540 A,
while the conventional method leadsto | = 538 A.

For the ACSR conductor 37/424 onecan seein Fig. 5, based on T, =
10"C,T.=80"C,V, =3ms 'and a = € = 0.6, that | isabout 1670 A. The
simplified method leads to | = 1664 A, and the conventional calculation
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Fig. 4. Ampacity for copper conductors.

givestheresult | = 1674 A. In both casesthe deviations are very small.
Asto theinfluence on thefinal result of the coefficientsa and ¢, which

can be considered equal [7], it can be mentioned that for a new (not

oxidized) 150 mm? copper conductor (all other conditionsremaining the
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same as before), the simplified method would lead to | = 531 A. For the
ACSR-conductor 37/424 one can show that | = 1643 A. The calculation is
based ona = ¢ = 0.2. It appears that in both cases tho arnpacity is about
1.5%smaller than in the case wherea = € = 0.6. It can be proved that under
the most unfavourable circumstances (larged and large ¢), the arnpacity of
new copper conductorsis decreased by about 4.5%, whilst for ACSR-con-
ductors the reduction is about 6%.

Asfor badly oxidized and contaminated conductors one should use [ 7]

a =€ = 0.9. The present article does not enter into this problem in any more
detail.

Finally, for practical purposes, Table 9 givesasurvey of the admissible
current during the month, based on V, = 0.6 ms™! and a = ¢ = 0.6. The dif-
ferent " maximum' temperatures mentioned in Table 5 are also considered.

From Table 9 it can be calculated that the " winter rating'" of copper con-
ductorsisabout 22% higher than the " summer rating™. For ACSR conduc-
tors the difference is about 18%0.Naturally, the different valuesfor T, with
respect to copper- and ACSR conductors respectively show this seasonal
dependence

TABLE 9
Allowable current for V, = 0.6 ms *,a=¢=0.6

June, May, April, March, February,
July, September, October, November, January,

August, December
T "max." (°C) 30 25 20 15 10
Copper 70 330 350 365 385 400
95 405 430 455 475 495
120 465 495 520 545 570
150 540 570 600 630 660
185 615 655 690 725 755
300 845 895 945 990 1035
ACSR 25/152 495 520 540 565 585
32/185 555 5856 610 635 660
201224 620 650 680 705 735
40/240 650 680 710 740 765
23/259 680 710 740 770 800
53/322 790 830 870 905 935
371424 920 965 1010 1050 1090
39/457 965 1010 1055 1100 1140
631483 1010 1060 1105 1150 1195
52/591 1150 1210 1260 1315 1365
77/604 1160 1220 1275 1325 1375

601686 1240 1300 1360 1415 1470




6. Conclusion

By means of the simplified method of calculation dealt with in this paper,
it is possible to determine quickly the ampacity of EHV-overhead iines.
By doing so this ampacity can be adjusted directly for the prevailing condi-
tions such as wind velocity and ambient temperature. Although, strictly
speaking, this calculation applies only to singular conductors, it may also be
used for bundle conductorssince, in general, the mutual thermal influence of
the sub-conductors can practically be neglected.
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Summary

A mathematical model is proposed by which an experimentally deter-
mined dependence of magnetization on magnetic field can be approximated.
The model includes a description of major and minor loops, of any order,
and can he used to compute the magnetic behaviour for any sequence of
magnetic field values. The description can be classified asa model based on
the use of arelatively small number of parametersand can be applied to
serve avariety of purposes.

A Introduction

Simulation by means of adigital computer of the behaviour of systems
containing magnetic materials with hysteresis requires a programmable
model of the hysteretic characteristics. A variety of models have been devel-
oped and published so far, which satisfy adiversity of requirements depend-
ing on the character of the problem and the desired accuracy.

The character of the problem will be determined by thefield of research
and by the specific questionsto be answered. For example, one may be
interested in the dynamic behaviour of electronic circuits containing mag-
netic elements, in the quasi-static behaviour of electromechanical devices,
or referring to our own work at the Twente University, in the write and read
processin digital magnetic recording.

* Now with National Aerospace Laboratory, Amsterdam, The Netherlands.



With respect to accuracy, it goes without saying that the more accurate a
model is, the greater will be its complexity. So accuracy means an increasing
number of parameters (and time of computing) and aloss of transparency of
the model, and requires increasing efforts in fitting the model to actual
hysteresis loops. On the other hand, in aless accurate model errors will
accumulate, to alarge extent, when derived values are used as starting points
in successive steps. The choice of a model will be a compromise between
accuracy and simplicity and will be dictated, in the end, by the purpose of
the user and the computing facilities that are at his disposal.

Examples of models using alarge number of parameters are the one
proposed by Portigal [1], which approximatesthe major loop by means of
cubic splines, and the one proposed by Hay and Chaplin {2], which con-
siders hysteretic behaviour as being generated by an aggregation of primitive
non-interacting elements.

The proposal of Portigal is a purely mathematical one, very accurate
indeed but applicable only in cases where a few loops have to be described. 1t
isimpracticable if one desires to express any possible major or minor loop,
unless one restricts the spline description to the major loop and introduces
an algorithm to derive minor loops from the major loop. This modification,
however, results in a minor loop description much less accurate than the
major loop description and thus givesthe model a somewhat unbalanced
character. The model of Hay and Chaplin isrelated to the physical notion on
which the so-called Preisach model [3] is based. This physical notion leads
to the expectation that the ability of the model to describe major and minor
loops with great accuracy at the same time is greater than in Portigal's
approach and will depend on the degree to which the model reflects physical
reality.

Models containing asmall number of parameters have the obvious
advantage of being transparent and being easy to manipulate, and are useful
when qualitative properties are studied. In the case of simulation of the write
process in magnetic recording, use is generally made of relatively simple
models (e.g. see [4—7]) which are not very accurate. This choice of simple
modelsis partly dueto thefact that they play arolein much bigger and time
consuming computer programmes and partly perhapsto thefact that
approximationsin other parts of the programme do not justify the efforts of
using very accurate hysteresis models. However, work is moving towards an
ever increasing degree of sophistication in modelling and programming,
which makes more complex hysteresis model s acceptable and even essential
when the attention isfocused on the effect of the accuracy of the hysteresis
model itself on the outcome of thesimulation, asisthe case in our investiga
tion. The need was felt therefore to improve the existing models, this of
course involving new parameters, but at the same time to keep the improve-
ment within the class of simple models in the sense that arelatively small
number of parameters is used, which may have adirect or an indirect physi-
cal significance.



Although our investigations are directed mainly to magnetic recording we
believe that the model we propose can be used in many other applications as
it is an empirical fact that in spite of the great diversity in magnetic materials
and devices some general characteristics of hysteresis loops are common to
many of them.

In the following sections we will deal with the intrinsic MH loop What we
want isadescription of the experimentally determined dependence of M on
H that includes major and minor loops and takes into account the time order
of the events. We first describe some characteristics of the MH-loops, then
give a description of our model and some possible extensions and finally
discuss some of its properties

2. Characteristicsof MH-loops

Fig. 1 shows a characteristic MH-loop. A family of first order ascending
minor loops is depicted, starting from the descending major loop, together
with afamily of second order minor loops which starts from an ascending
first order minor loop. In characterizing the major loops we anticipate the
presentation of our model and follow Maizieres and Fourquet [8] who
propose a description by means of four similar hyperbolic parts charac-
terized by four parameters: the saturation magnetization M,, the coercive
force H,, the curvature of the hyperbolasp and a parameter R(R = 0) char-
acterizing the "*shear'" of theloop. The major loops are expressed as follows:

(M, —eM)(H—RM — oH,) = pM (1)

with a = +1 for the ascending loop
a = —1 for the descending loop

e=+1 forM>0
e=—1forM<OQ

Fig. 1. Characteristic MH-loops (magnetic tape, Philips ER 13) showing a family of first
order minor loops (solid lines) and a family of second order minor loops (dashed lines). A
straight line is shown, connecting the bending pointsin the first order minor loops.
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Fig. 2. A minor loop isdirected between the loops of the two preceding orders to the
starting point of the preceding order loop.

This model degenerates to aset of straight linesfor p = 0, while for positive
increasing values of p eqn. (1) representsloops with decreasing curvature.

MH-loops approach the lines M = + M, asymptotically. In the original
model of Maizieres and Fouryuet, BH-loops and ¢i-loops can aso be
described. A fifth parameter isthen used to characterizethe inclination of
the asymptotes corresponding to our linesM = = M,. We prefer the descrip-
tion with four parameters to keep the formulae as simple as possible. The
facility to simulate hysteresis curves which approach saturation along an
inclined asymptote can be added afterwards by an appropriate roation of the
loop to he simulated.

With regard to the minor loopsit isimportant to note that any minor
loop is guided more or less by the loops of preceding order. Fig. 2 illustrates
what we mean by this. The (n + 2)-th order,loop isdirected in the space
between the two preceding ones and guided to the point A without inter-
section of the preceding loops. In the same way an (n + 3)-th order loop,
starting at point P, isdirected to B. It isimportant that a model reflects this
property in order to prevent instability (see[9}).

A characteristic which plays an important role in the description of the
minor loops in our model isthe straight line which connectsthe bending
pointsin thefirst order minor loops (Fig. 1) .0f course, it isonly an assump-
tion that thislineisstraight at all, but Uilhoorn has noticed that thischar-
acteristic can be observed in practical cases while similar statements can be
found in theliterature [10,11]. We discuss thisin alater section. Further
details concerning MH-loop characteristics can also be found in [2].

3. Description of the model

The description of the major loopsin our model istaken from Maizieres
and Fourquet [ 8], (egn. (1)).This model is sufficiently flexible for our
purposes and more accurate than other simple models known to us (see Sec-
tion 4). It isahappy coincidence that this model is suitable for a description
of the minor loopsin analytical form.

For this purpose we introduce the linesqgM = H —— « H, which connect the
bending pointsin thefirst order minor loops. In fact it isonly thedirection
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Fig 3 The first order mior loop (1> 2) isderived from the ascending major loop by
multiplication from M M, with the factor Ky — (31  Mg)/(My M)

Fig. 4. A minor loop of higher order is generated whenever a turning point (e.g. H,) is
situated between thelast and the preceding one (Hy,' and i{,,+). In other cases(e.g. Hy)
the MH-locus returns to (a) minor loop(s) of lower order.

that we need, which is determined by the parameter q.

The model now runs asfollows (see Fig. 3): first order ascending minor
loops are derived from the ascending major loop by a multiplication in the
direction determined by q from a baselineM = M. The constant of multi-
plication K, can be calculated when the starting point on the major loop is
known: K, = (M, — M,)/(M; — M,) (see Fig. 3 for the meaning of the vari-
ables). A second order descending loop is derived in an analogous way. Now
the multiplication occurs from M = M, as baseline and again in the direction
of g. It follows that K, = (M, — M;)/(Ms — My). A third order loop is
derived from afirst order loop in the same way, and so on. Of course the
same procedure is used for asequence of minor loopsstarting from the
ascending major loop.

In general the n-th order loop is derived from the (n — 2)-th loop with the
value of the multiplicative constant K,, determined by the coordinates of the
last and the last but one turning point. The description can be completed by
defining what happens when the H-value of the (n + 1)-th turning point over-
shoots that of the (n — 1)-th one; in that case the (n — 2)-th minor loop will
be followed again. Looking at Fig. 3 this means that whenever the third
turning point issituated to theleft of the first one the MH-locus ison the
descending major loop again. In Fig. 4 thissettlement is clarified for the
general case in which afield value H, isfollowed by H,. From P to P the
n-th order loop isfollowed, from P to P'' the (n — 2)-th one and from P"' to
Qthe(n — 4)-th one.

Analytical expressionsfor the minor loops can be derived from the expres-
sion for the major loops, eqn. (1), to read:

[MP, — e(M —M¥)][H— R(M —M5)+Q,, — a(=1)" H,]=p(M— M) (2)



with

P,=P, K, Pi=Ky; P,=K,

M¥=M, (1 —K,) +K,M¥ 55 Mf = aM(1 — Ky); M3 = My(1 — K»)
R.(P,—1)q (3)

M,

Q,=Q, o+ Q(M:‘—z‘Mf); Q1= aqgM(K;—1); Qy= qM (K, — 1)

R:

With the help of these recurrence relations all parameters can be calculated
from the major loop parameters and the coordinates of the turning points
(which also determine K,,). The proof of eqn. (2) can be given by complete
induction. Transformation of egn. (2), for n — 2, by multiplication by a
factor K, from a baselineM = M,,_; in the direction determined by q, gives
egn. (2)for n.

This transformation can be expressed by

/] \
H H+q(1‘4 _M]Wrr 1,\! (}(T '_1}

1 (4)
M- — (M-—-M, 1+ K,M,—)

n

Introducing (4) into (2) resultsin (2)and (3).

To compute a path in the MH-plane which corresponds with a sequence to
be simulated a series of H-values of the turning points (H, H,, ...etc.) must
be given. If the model is programmed, a procedure has to be designed which
selects the turning points from any sequence of H-values that determinethe
magnetic history of the material to be simulated. The value of « in eqns.(2)
and (3) isdetermined by the starting point: & = 1 when the starting point is
on the descending major loop, « = —L in the other case. The value of ¢ is
equal to the value of € of that part of the major loop from which the minor
loop part is ultimately derived. The starting situation determines the first
loop. M, can be calculated by puttingH = H; in egn. (1). The resulting cubic
equation (inshort: AM% + BM; + C= 0) has the two roots [—B * \/(B% —
4AC)1/2A. It iseasy to prove that the correct solution istheroot [-B —
V(B? — 4AC)]/2A and that this is consistently valid, regardless of the values
of a, e and the order of the minor loop. (Animportant point in this proof
isthe observation that the sign of the nominator 24 = 2¢R,, isequal to the
sign of £.) Next K; can be calculated and the first order minor loop can be
formulated. This cycle has to be repeated at any turning point: calculate
M, from H,, and the (n — 1)-th order minor loop, calculateK, from M, and
so on.

ThelinesqM = H—«H,, connecting the bending points of the first order



Fig. 5. Vatiation of the parameters I, , and/or M3, results in major loop forms of great
diversity. Major loops are shown having different values of #,, (-—5,—3, —1,1and 3
resp.) with al other parameters lixed (H, = 1.85,p = 0.2 and R = 0.2). For reasons

of economy thr major loops are drawn one inside the other.

Fig. 6. (a) Influence of variation of A (with M, = 6.45, H, ), = 1.85, M}, =1.00,P = 0.2,
g=0.1,R=0.2and « =1)on afirst order minor loop. Values of A are —0.2;-—0.1: 0;
0.03and 0.1 (loops from left to right). (b) Effect of varying the value of q (q= — 0.2,
0.01 and 0.19 resp.) on first order minor loops. For thiscase Mg = 6.45, [, , = 1.85, My,
=1.00,R=0.2,« =1 and A = 0.

loops, intersect the major loops at the points M = 0, H = «aH,. Thisissimply
so because of the symmetry of our model, the hyperbola parts are all similar
and fit to each other at the points just mentioned, The model can be gen-
eralized, however, to represent those cases for which the bending point in
the major loop no longer can be approximated by a point on the H-axis. We
found it advantageous to replace the one parameter H, by the two param-
eters H,, and M,, (seeFig. 5; bp standsfor " bending point') and at the
same time abandon the similarity of the hyperbola branches. This can be
done without introduction of asecond additional parameter. When the
curvature parameter of the branches having ae = 1 isdenoted by p, we take
the curvature parameter of the branches having ce = 4 asp' = p(M, + My,)/
(M, —M,,)). In thisway the brancheshavinge = +1 and € = —L fit to each
other at the points (a«H,,,), («M,,) with equal slope. In Fig. 5 we demon-
strate the effect of thisadditional facility for some characteristic cases, which
also resultsin a modified general expression for the loop of order n:

[M,P, — M —MH][H—-R,M — M} +Q,,—a(—1)""Y(H,, — RM,,)] =
=p'(M—M} — a(—1)"" P, My,) (5)

with

p'=(zea+ ) p+ (3 — fea) p(M; + My,)/(M;— M,,)



The transformation formulae (3) remain valid for this generalization.

Another modification can be made by replacing M, by M (1 -—- A) where A
isacorrection factor. This may give better results in some cases and amounts
to shifting the baseline from which thefirst order loops are generated. In
Fig. 6a we show some results. (In addition, the effect of varying q is depicted
in Fig. 6b).

There may be other special purpose modifications to improve the model
for specific applicationsand it isour impression that these modifications can
be performed easily starting from the standard programmed version of the
model.

4. Discussion and conclusion

The parameter q playsan important role in the model. Theintroduction
of thisdirection of multiplication leads to better resultsin the cases we have
studied and links up with data found in theliterature. Studies at the Tohoku
University of Japan [10,11], on the behaviour of recording material have led
to the insight that this direction may have a physical significance and that
theinclination of thelineisaffected by particle packing density as aresult
of interaction fields. Their work is directed mainly on rather square hystere-
sisloops characteristic for oriented particulate media and for which q < 0.
We however extend the use of q for valuesq > 0, which may appear in " lean-
ing" hysteresis loops. Of course the physical significance of g isnot clear in
that case but neverthelessthere is experimental evidence which justifiesthe
use of it.

One of the advantages of our approach is the capability of the model to
represent the effect of shear which may play arole in cases where applied
magnetic fields are used instead of internal fields. In those cases theintrinsic
MH-curve must be transformed by replacingM and H by M and H + DM (D
is the shearing factor or demagnetizing factor, determined by the geometry
of the device). This transformation amounts to the simple replacement of g
andR byg+DandR +D inegns. (1)and (3).

The proposed procedure for the derivation of minor loops assures stabil-
ity. The model of Potter and Schmulian [ 7] which does not fulfill this
requirement has been improved by Nishimoto et al. [9] to obtain stability.
In fact our procedure is a generalization of the method of Nishimoto applied
to the model of Mazieres and Fourquet.

Our impression is that the model proposed by us combines the advantages
of preceding simple models while the description of any loop of any order
can be given in a uniform analytic form which ultimately depends on a
rather small number of starting parameters. A general statement about the
accuracy is dangerous however, since the criterion for the accuracy may
depend on the application. In one case the values of M are desired with great
accuracy, in another case this may berequired for dM/dH, for instance. Our
preference for the major loop model of Mazieres and Fourquet is based on



TABLE 1

Maximum/mean error for some simple models and characteristic materials. The numbers
are percentages of the saturation magnetization. (M, is the saturation remanence, M,. /M
isthe squareness ratio)

Ref. 7 Ref. 6 Ref. 5 Ref. 8 M, /M,
vFeo03-tape (oriented) 23.6/9.1 13.6/4.3 10.4/8.2 6.6/3.7  0.754
YFe,Og-disc (nun-oriented) 15.4/7.7 11.0/4.9 13.6/8.4 7.7/3.4  0.406
Fe-film 4.4/1.9 18.2/11.1 25.3/16.2 3.4/1.6  0.302

the general visual impression of itsaccuracy which can be expressed quan-
titatively by calculating the magnitude of the deviation in the direction of M.
In Table 1 theresults of such a calculation are presented. For some simple
models and some characteristic materials the mean and maximum deviations
between experimental values and " best fit"" model values show that, with
respect to the criterion mentioned, the Mazieresand Fourquet model is
generally the most accurate one.

In conclusion we mention aless agreeable feature of the model. In some
cases a minor loop may intersect a preceding one in such away asillustrated
in Fig. 7. Such a situation may occur in the vicinity of the upper and lower
parts of the major loop. Even the major loops will intersect each other in the
generalized form of the model when M,,, > 0, this being generally for large
values of H. To prevent instability in those regions a safety measure has to be
inserted in the model. In our programme we have solved this problem by
stating that whenever asituation asillustrated in Fig. 7 occurs the MH-locus
will follow theloop of the preceding order. For Fig. 7 this means that the
minor loop n + 2 isfollowed until S isreached, and theloop n + 1 by con-
tinuation to theright. A point of intersection can easily be detected by the
value of the multiplication factor K,. Inthe caseof Fig. 7 thefactor K,,.3 to
derive an (n + 3)-th order loop will have avalue of 1 at the point S. When-

Fig. 7. Whenever a minor loop intersects a minor loop of the preceding order, the trajec-
to.y of thelatter will be followed from the point of intersection onwards (tothe right of
point S).



ever a point isfound with K,, > 1 thisis an indication that the point ison
an "overshooting™ loop and must be recalculated on theloop of preceding
order. It must be said that the above-mentioned feature can easily be over-
come in programming and has minor influence on the applicability of the
model.
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Summary

It is shown that a numerical integral equation method can be established
to solve Laplace's equation in a geometry with a periodic structure. The
method uses a periodic Green's function and requires less computation time
than a conventional integral equation technique.

1. Introduction

If one hasto solve Laplace's equation V%) = 0 in a geometry showing a
periodic pattern in the x direction with period a, it issufficient to solve the
equation in aunit cell 0 < X < a. in order to guarantee the periodicity of
the potential, one hasto fulfil the conditions that the potential ¢ and its
normal derivative V¢ . u, should have the samevaluesat X = 0 and x = afor
points with the same ordinate. The problem isthen reduced to an ordinary
potential problem in a bounded area. This can then be solved numerically by
an integral equation technique {1—3]. However, it isalso possible to
establish an integral equation by using a periodic Green's function with
periodicity a. The potential isthen automatically periodic and the boundary
conditions at X = 0 and X = a may be dropped.

2. Integral equation
For the sake of simplicity, the method will be outlined for the particular

geometry shown in Fig. 1. The extension to arbitrary periodic geometries
with periodic boundary conditionsis obvious. The shape shown in Fig. 1is
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Fig. 1. Simple geometry used to establish an integral equation method with a periodic
Green's function.

obviously periodic for arbitrary a values. The analytic solution is known:

_ Voy
6=y W

so that the numerical results can easily be checked.

Jn order to determine a Green's function with a periodic character, one
can proceed in the following way. The Green's function G(rir') being the
potential in r caused by aline source in r’, a periodic Green's function can
easily be obtained as the potential resulting from a periodic array of line
sources placed at pointsr + k au, (k= — o, ... + ). The Green's function
isthen given as an infinite series which can be summed analytically. The
resultis[4] :

G(r7)) = 4h177 In |:Ch ZF(,ydjy,__'l — cOoS Z,?(’ﬁd:x',q (2)

It iseasily verified that (2) is periodic in the x direction.
In order to establish an integral equation the potential ¢ iswritten as:

o) = | PEIGEIT)AC (3)

AA'UBB

where p(r') isan unknown function defined along AA' and BB'. If one wants
to utilize the free-space Green's function p should also be defined along AB
and A'B'. With the periodic function the boundary conditions on the
proposed solution (3) yield

V, = or')G(F|T") dC forT € BB’ (4)

AA'URB'

0= [ LF)GEFIFH)AC forF € AA (5)

AA'UBB



The expressions (4) and (5) constitute an integral equation for the unknown
function p(7). Once this function has been determined, the potential ¢ can
be calculated by (3).

3. Numerical solution

In order to solve the integral equation numerically, the boundaries AA'
and BB' are divided into m equal segments with length AC (mAC = a).
Denoting r; as the centre point of thei-th interval (i = 1, ... 2m) the integral
equation can be written numerically as:

] 2m ‘V() 1:1,...,m
i [ GEIFYAC + 20 p,GFFpAC= 0 i=m+1, ., 2m (6)
AC =1
1#1
(6)isalinear algebraic set which can easily be solved numerically in order to
determine the 2m unknowns p;. Once these p;’s are found, the potential ¢
can be evaluated by:

2m

6(r) =27 p,G(rir)) AC (7)
i=1

For the diagonal elements of the algabraic set, an integration should be per-

formed in order to assure convergence because G(r;/ r;) ==  These diagonal
elements can be calculated by:

ACPR o2mx’

a -1 I____ 1 — e ’
f G(r;Ir')dC' = —2ﬂf 1n(1 cos — )dx
Ac; 0
AC/2 '
__ACIlnh2 1 ( nx) ) ]
— Of In (sin = - ‘dx (8)

By using the product expansion of sin z [5], one obtains:

> 2
lnsinz:lnz+2in(1-— z ) (9)

k=1 k22

So that the diagonal elementsare found to be:

., ACIn2 _AC(, mAC
fG(r,»lr ydcC =—‘*7;‘* ““é;r‘(ln*g‘a—““l)
AC
a3 [AC . 1+AC/2ka _ AC ( __V_ég)}
+7T,§1kl:ka I Ac/zha  2ka P\ T gz (10)

All the coefficients being known, the algabraic set can easily be solved
numerically by Gauss' elimination method [61].
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Fig. 2. Absolute value | A¢ | as a function of m. The upper three curves correspond
toa=4and b= 1and are calculated for the pointsXx = 1.2, y = 0.2 (curvr a),y = 0.4
(curve h) and y = 0.6 (curvec). The lower three curves correspond toa= b = 1 and are
calculated for the pointsx = 0.3,y = 0.1 (curve a), ¥ = 0.3 (curve b) and y = 0.5 (curvec).

In Fig. 2 the absolute value of the difference between the exact values
(egn. (1), setting V, =1, so that ¢ variesfrom 0 to 1), and the numerical ones
are represented as afunction of m fora=l1anda= 4 (b= 1). From these
results, one observes that a good accuracy can be obtained for moderate
values of m. For points close to the boundary (curve a), the error shows a
more irregular behaviour, which isacommon feature of integral-equation

methods [7,8]. It isaso found that the error increases with a, which can be
easily understood.

4. Conclusion

It has been proved that an integral equation method can be constructed
for ageometry with a given periodicity by using a periodic Green's function.
The unknown function p should then only be defined along a part of the
boundary of a unit cell, which reduces the number of unknownsif the
problem is solved numerically. The computation time will then also be
reduced. From the numerical data obtained with a specific geometry, one



concludes that the accuracy is sufficiently high and comparable to that ob-
tained with ordinary integral equation techniques.
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Summary

The maximum channel capacity of acoaxial cable, given the power of the
input signal and the power spectral density of the assumed additive white
Gaussian noise, is derived.

It isthen assumed that the oneinner conductor of the coaxial cableis
replaced by a set of n parallel conductorsand that the n transmission modes,
characteristic for the resulting multiwire cable, are used to form n indepen-
dent communication channels. The maximum channel capacity of atrans-
mission system built with such a multiwire cable is derived.

Computational resultsfor n =1, 2 and 4 show that application of a multi-
wire cable instead of acoaxial cable can lead to a system with a higher chan-
nel capacity or to a saving of copper for the cable conductors.

1. Introduction

Multiwire cables with twisted pairs or star quads as well as coaxial cables
are well known and extensively used in analog and digital communications.
The multiwire cable with twisted wires has the advantage of being well suited
for space division multiplex systems. On the other hand it has the disadvan-
tage of non-uniformity, i.e. the cross-section varies along the cable and there-
forethistype of cableis of limited importance for high-speed digital trans-
mission. The coaxial cable has the advantage of being uniform and isthere-
fore convenient for high-speed digital transmission. Besides, contrary to the
cable with twisted wires, the coaxial cableisextraordinarily well suited for
theoretical treatments, owing to the simple rotation-symmetric configuration
of its cross-section.
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Fig. 1. Examples of n-wire cables.

It isthe purpose of this paper to investigate cables that share the advan-
tages of uniformity of the coaxial cable and of suitability for space division
multiplex of the multiconductor cable. We get such a cable if we replace the
inner conductor of acoaxia cable by n parallel conductors which are mutu-
ally isolated and well spaced. Some examplesfor different n are depicted in
Fig. 1. Aswill be clear from thisfigure we will denote a cable with n parallel
inner conductors surrounded by acylindrical conducting shield as a multi-
wire cable with n wires, or more briefly an " n-wire cable™. It iswell known
that such an n-wire cable can be used to form n independent transmission
channelsin either direction. This stems from the fact that in such a system
of n + 1 paralel conductorsthere arein general n independent modes of
propagation in either direction, corresponding to the solutions of the
generalized telegraph equation [1—3]. For instance for n = 2 these modes
are known as the common and the differential mode or as the even and the
odd mode. Inter-channel interference between the independent transmission
channelsas aresult of deviations from the uniformity of the cable can be
coped with in the same way as with inter-symbol interference; in fact thereis
no principal difference between the two phenomena [4,5]. In asimple digital
transmission link as well asin complicated long haul systemsthe transmis-
sion properties depend mainly on the combination of cable sectionsand the
input amplifiersin the receiversthat introduce gain at the appropriate points
in the system. A singlesection, consisting of a cascade of acable with its
attenuation, phase distortion and noise and an amplifier with its amplifica
tion and its noise figure, formsa noisy channel with memory. To judgethe
performance of adigital communication system it can be fruitful to compare
it with the performance of an ideal system. To this end we can imagine the
ideal combination of an encoder and a decoder for the given noisy channel
with memory and use the concept of channel capacity asintroduced by
Shannon [6] to judge the performance of the system. Berger and Tufts [ 7]
call the performance of such an ideal system **the optimal performance
theoretically attainable™ (OPTA). The OPTA of atransmission system that
follows a+/f attenuation law was given by Raisbeck [8]. The OPTA of
coaxial cableswas used by Pierce [9] to compare the performance of differ-
ent modul ation systems.

In the next part of the paper we first derive the maximum channel capac-



ity of acoaxial cable and thereupon the maximum channel capacity of an
n-wire cable.

In the remainder of the paper we give some representative results of com-
putation of these capacities and in conclusion try to evaluate these results.

2. The maximum channel capacity of a coaxial link

The performance of a coaxia cablelink can be described by its channel
capacity in the sense of information theory {6—9]. In this treatise we restrict
ourselvesto power limited channels with additive Gaussian noise. This power
constraint together with the typical variation of the attenuation of the cable
with frequency leads to a bandwidth constraint in the case of maximum
channel capacity. The signal will contain no frequencies greater than some
maximum frequency W.

2.1. The model

The model of the transmission system that we wish to analyse is depicted
in Fig. 2. The cableisrepresented by the transfer function H(f). Assume that
the frequency interval of interest issuch that the attenuation law is com-
pletely controlled by skin effect. Thus

VH(f)12 = exp (—kf1/?) (1)

The constant & in egn. (1)depends on the dimensions and the material of
the cable and is given by

e 2 ()"

[ =length of the cable
ro= inside radius of the outer conductor
r,= radius of the inner conductor
€ = permittivity of the dielectric
o = conductivity of the conductor material
To the output of the cable section is added white Gaussian noise with one-
sided spectral density N.
Finally thereisthe signal power Pat theinput to the system. Thissignal
power Pisdistributed over the frequency range of interest. If p;(f) isthe
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Fig. 2. The model of asingle transmission link using a coaxial cable with transfer function
H(F).
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power spectral density of the input signal and p, (f) the power spectral
density of the output signal, there exists the relation

po(f) = pi(HIH()I? (3)
Substituting egn. (1) into egn. (3) we obtain
pi(f) = po(f) exp {kf1/?} (4)

The input power Pis given by

P= [ pNdf= [ po(f) expikfii2} df (5)
0

0

The channel capacity is given by

c={ (1 +f’—9@) df (6)

0

2.2. The optimum input- and output spectral densities

To maximize the channel capacity C, it is necessary to distribute the signal
power Pin the proper way over the frequency range of interest. We therefore
determine the function p, (f) and, related to this, p; (f)in such away that
the channel capacity as given in egn. {6) is a maximum under the constraint
of aconstant input power P. This isoperimetric problem can be solved by
considering the integral

- )+ car
1= [ (1+ 22D LED) ot oy 4 eathy expiiriar (1)

0

co

where g(f) isan arbitrary function of f which is continuous and whose
derivative is continuousin the range of integration; € isa small quantity and
A7!is a Lagrange multiplier to be determined for maximum channel capac-
ity, which isdone in the next section.

Differentiation of egn. (7) yields:

oo

1 g(f) &t
S po(f)+eg(f) f g(f) exp {kfY?) df (8)
o 1+ N 5

For e = 0 in egn. (8) we have

dr g(f) o 1
df — A\ kRfl2} d 9
(de)e 0 fN+p0(f) i Ofg(f)eXp{ 112y df 9)
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Fig. 3. Sketch of typical functions p,(f) and p;(f) according to eqns. (11)and (12)

The condition for a stationary value of the capacity under the stated con-
traint is

ary
(a‘e)czo 0 (10)

Combining egns. (9)and (10)yields aformal condition for the power spec-
tral density of the output signa

polf) = hexp (—kfY%} —N (11)
Substituting egn. (11)into egn. (4)we have
pi(f) = h—N exp{kf'’?} (12)

Fig. 3 sketches the form of p, (f) and p, (f). It can be seen that these func-
tions are both monotonically decreasing with increasingf.

For values of &f'*greater that In h/N they are both negative. However, a
power density function must be non-negative, and therefore, if theinput
power Pisassumed to be finite, an optimum power density function, with
maximum channel capacity asa criterion, must be zero for frequencies
higher than a certain finite frequency W and thusthe upper limits of the
integralsin eqn. (7) can be replaced by w. Obviously this change of theinte-
gration intervals has no influence on the results egns. (11)and (12)insofar
asthe frequency interval from 0 to W isconcerned. Thus

po(f)=Aexp{—kfY?) —N= 0 for 0< f<W (13)
po(f) =0 foralf>W
pi(f)=AN—Nexp{kfl2} 20 for 0< f< W (14)

pi(f)=0 foral f>w
From egns. (13)and (14)we have
A= N exp {kW1/2}
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Fig. 4. Curves of the input and output power density functionsaccording to eqgns. (13),
(14) and (16)with W = 4/k2and ¢ = 1.

Fig. 5. Curves of the input and output power density [unctions according to egns. {13),
(14) and (16)with W = 4/k2and a = 2.

Or
A =aN exp{kW'2} fora> 1 (16)

Figs. 4 and 5 sketch the behavior of p, (f) and p, (f) with a= 1 and with
a> 1 respectively.

In the appendix it is proven that with a given input power P the distribution
of power must be asin Fig. 4, namely with a = 1 to obtain the maximum
channel capacity.

2.3. The optimum channel capacity

For optimum channel capacity we have

A =N exp{kwl/?} amn
Substituting egn. (17) into eqn. (14)we obtain
pi(f) = N{exp(kW12)y — exp(kf}/?)} for 0<f< W (18)

pi(f)=0 foral f>Ww
Substituting egn. (18)into eqn. (5) we get

W
P=N [ {exp(kW'2)— exp(kf'1?)} df
0

- 2 2 2N

= NW exp(kW'/2) {l kW+k_2W}—7eT (19)
Substituting egn. (17) into egn. (13) we have
po(f)=Niexp {R(WL2 —fY2)y _ 1] for 0<f< W (20)

po(f)=0 foral f>w
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The maximum channel capacity is derived by substituting eqn. (20) into
eqn. (6)

W
C= [ kW' =) df = LRW?P? (21)
0

Recapitulating, an optimum distribution of the available input power P
with maximum channel capacity as a criterion includes a restriction to a
baseband W of the cable. The value of W increases with the available input
power and is given implicitly in eqn. (19). The power spectral density func-
tions follow from eqns. (18) and (20) and the maximum channel capacity
from eqn. (21).

2.4. Example

Assume the coaxial cable 1.2/4.4 mm (recommendation G.342 of the
C.C.ILT.T.) with r; = 0.6 mm and r, = 2.2 mm. Applying formula (2) yields:

(2 L 2\ 43 é-ﬁ) - (E) 1z
& ’(1.2 i 4.4) 10 (I“ 12) o (22)
With ¢ = nde =107 193
€= €6, and €9 = o € = 1.23;
0=58x107Q 'mt k=125% 10751 (23)
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Fig. 6. The optimum bandwidth of a coaxial cable 1.2/4.4 mm as a function of the length

! and with different values of P/N.

Fig. 7. The channel capacity of a coaxial cable 1.2/4.4 mm as a function of the length [
for different values of P/N.



This theoretical value isin close agreement with a measured value of the
attenuation of thistype of cable at afrequency of 10° Hz that shows 17.2
dB for alength of 100 m.

Formulae (19)and (23)giveimplicitly tht relation between W and 1 with
P/N a parameter. And with egn. (21) the channel capacity can be calculated.
Fig. 6 shows the bandwith W asafunction of the length with P/N a param-
eter and Fig. 7 showsthe channel capacity C asafunction of thelength 1 of
the cable.

3. The maximum channel capacity of a multiwire cable

As mentioned in the introduction, an n-wire cable can be used to form n
independent communication channels by taking advantage of the n indepen-
dent transmission modes in one direction. We will call such an independent
channel asubchannel. Thus the communication channel that can be formed
with amultiwire cable consists of a set of n subchannels, each subchannel
associated with a particular transmission mode. The model that we will use to
derive the maximum channel capacity of a multiwire cable consists therefore
of aset of n submodels asdepicted in Fig. 8.

Each particular subchannel hasits own transfer function that isdeter-
mined by the attenuation and dispersion of the transmission mode with
which this subchannel is associated. Again we will assume that the transfer
functions are completely controlled by skin effect, so that the square of the
modulus of the transfer function of the j-th subchannel can be described by:

|H()1? = exp{—k, %} (24)
with k; a constant that depends on the dimensions and the material of the
cable and on the transmission mode;.

For the sake of simplicity we will assume equal noise power densities N
for the different subchannels, a reasonable assumption if we think of equal

temperatures of the conductors and equal noise figuresfor the amplifiers
used.
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Fig. 8. The model used to calculate the channel capacity of a multiwire cable with n
parallel conductorsin ashield.



As we want to compare the performance of an n-wire cable with the per-
formance of a coaxial cable, the latter being aspecial case of the former
with n = 1, we assume the total available power for alength / of the cable
to be constant, independent of n and denote it by P. This power P is sub-
divided into n parts and each part P, isused for the particular subchannel /
Thus:

p= 21 P, (25)

In agreement with egn. (21) we find, for the maximum channel capacity of
subchannel j:

C, =tk W23 (26)
with W, given implicitly by:

- __ 2 2 12, _ 2N
P =NW, (1 Wi + ngvj)exp{kjwf } k2 (27)

which isin accordance with egn. (19). The noise sources being uncorrelated,
the channel capacity of the multiwire cableisthe sum of the n subchannel
capacitiesthat are related to the n independent transmission modes. Thus:

c=2c (28)

AsC; isafunction of P,, Cisafunction of the n powersP;.

We now determine the distribution of power over the different subchan-
nels that resultsin maximum C by using Lagrange's method of undetermined
multipliers. A necessary condition for an extremum of C under the constraint
of constant total power Pis:

grad (C + \P) = 0 (29)
with A a Lagrange multiplier.

Because C; isonly afunction of the power P; and because 9P/oP; = 1 the
condition (29) reduces to:

S n=0 30
ap *A=0 i=1,..n (30)
Differentiation of egns. (26)and (27) to the common parameter W, yields
dc;

du;_j:%kjw}/z (31)
and

dp;

dw’,j = 1Nk, W}2 exp {k;W}'?) (32)

respectively.



Combination of egns. (31) and (32) gives:

dC; )

ap= {Nexp(r, W} (33)
7

With egn. (33) the condition (30) reads:

k;W}/? = constant = K (34)

In practical situations the term %V—in eqn. (27) can be neglected.

]

Combination of egns. (34) and (27) then resultsin:

P, =%(K2 — 9K + 2) exp (K] (35)

]

Combination of egns. (34) and (26) gives:
C; = %kW?/z (36)

4. Computational results

The calculations are based on the analysis by H. Kaden of cablesof the
kind considered in this paper {10]. He gives, in the reference cited, formulas
for the attenuation of the different modesin 2-wire and 4-wire cables.

From egn. (1), it followsthat the relation between the constant /; and
therelated attenuation per unit of length a, of the exited modeis given by:

_ 250

k; 37
J \/f— ( )

To be able to compare the properties of interest of cableswith different
numbers of inner conductors, we will compare cableswith equal outer con-
ductors. To that end suppose first a coaxial cable with an outer conductor of
inside radiusry and an inner conductor of radiusr,. Assume aratio 3.6
between the radii of these conductorsto obtain a cable with minimum
attenuation and consequently maximum channel capacity, given ro. Assume
further:

ro =5 mm

0=58X10"[Q2m]!

Ez 18 .—1

N 10*°s

€, = 2.36 (38)

The constant % that determines the transfer function of the coaxial cable fol-
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Fig. 9. The maximum channel capacity C of a coaxial cable and therelated bandwidth W
asafunction of thelengthl.ry =0.5x 1072 m,P/N = 1018 xs1,0=5.8x 107 [2m]? and
€, = 2.36.

lows from egns. (2) and (38):
k=1764X107"1 (39)

The bandwidth W and the maximum channel capacity C are calculated from
egns. (19) and (21) respectively and plotted in Fig. 9 as functions of the
length 1

Next we consider a 2-wire cable with the same inside radius of the outer
conductor asin the previous case. The two independent subchannelsare
characterized by their transfer functions, which in turn are determined by
the ks (j = 1,2). The constantsk; follow from eqn. (37). The attenuations
a; can be expressed in 1, r, and a, the dimensions that describe the cross-
section of the cable being as depicted in Fig. 10. Following [10] we derive:

ky= 9.91X10771
ky=11.92X 10771 (40)

If &, and %, are known, P; can be calculated from egns. (25) and (35) and
thereupon k, W;, C; and C follow respectively from egns. (35), (34), (36) and
(28).

mode nr.

1 2

C wire nr.
1 1 1
2 1 -1

Fig. 10. The cross-section of' the optimum 2-wire cable and the way in which the conduc-
tors must be excited to form the subchannels. ro = 5mm;a=1.8 mm;ro = 0.81 mm.




Obviously, the channel capacity C thus calculated isafunction of r, and a.
The values of r, and a that make C a maximum can be determined and
appear to be:

ry=0.162r,
a=0.36r, (41)

The resulting cross-section, aswell asthe way in which the conductors must
be excited to form the subchannels, isdepicted in Fig. 10. The maximum
channel capacity C asafunction of thelength / of the cable, assuming the
same P/N, a and ¢, asin the previous case of the coaxial pair, is plotted in
Fig. 11. It isthe sum of the two maximum subchannel capacities C; = C,
and C, = C, belonging to the channels formed by the common mode and
the differential mode. These subchannel capacities and the corresponding
bandwidths W; = W, and W, = W, are also plotted in Fig. 11

Note that (a) the maximum channel capacity of the 2-wire cable practi-
cally equalsthe maximum channel capacity of the coaxial cable; (b) the
highest frequency W, issubstantially lower than the frequency W for the
coaxial cable; (c) the total mass of the copper used for theinner conductors
is 68%0f the mass of the copper needed for the inner conductor of the
coaxial cable.

Finally we consider a 4-wire cable. Again following [10] we derive the
four k;’s:

ky=1.11Xx10"9/

ky=kz=1.27X107%]

ky=1.16 X106/ (42)
In the same way as wasdone in the case of the 2-wire cable, we can calculate
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Fig. 11. The maximum channel capacity of the 2-wire cable, together with the maximum
subchannel capacities C, and Cq and the related bandwidths W, and Wy as functions of the
length 1 of the cable. I'he subscripts c and d stand for the common and differential mode
respectively.
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Fig. 12. The cross-sextion of the optimum 4-wire cable ancl the way in which the conduc-
tors must be excited to form the subchanneis. rg = 5 mm;a= 2.3 mm and r4 = 0.69 mm.

P., K, W, C; and C. For maximum C it follows that r, and a are given by:
r, =0.138r
a=0.46r, (43)

resulting in a cross-section as depicted in Fig. 12. The way to form the sub-
channelsisaso given in thisfigure.

The maximum channel capacity C isplotted in Fig. 13. It isagain the sum
of the four subchannel capacities C,—C,. These as well as the corresponding
W,—W, are also plotted in Fig. 13.

Note that (a) the maximum channel capacity of the 4-wire cable issub-
stantially higher than the maximum channel capacity of the coaxial cable;
(b) the highest frequency W, islower than the frequency W for the coaxial
cable and the frequency W, for the 2-wire cable; (c¢) the total mass of the
copper for the four inner conductors equals the mass of the copper needed
for the inner conductor of the coaxial cable.

We now illustrate by an example the performance of the different cables
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Fig. 13. The maximum channel capacity of the 4-wire cable, together with the maximum
subchannel capacities C;—C4 and the related bandwidths W; —W, as functions of the
length 1 of the cable.



described. Assume that adigital transmission system has to be built for a bit
rate of 300 Mb/s and with PIN = 10'® s, With the ideal combination of
encoder, cable and decoder we can make the distance between neighbouring
repeaters with the coaxial and with the 2-wire cable 6300 m. The 4-wire
cable can span adistance of 8100 m.

The highest frequencies used are, respectively, 26, 15.5 and 7.5 MHz. The
quantities of copper for the inner conductor of the coaxial cable and the
conductor pair of the 2-wire cable are 340 and 230 kg respectively for a
single span.

5. Conclusion and remarks

With the channel capacity asacriterion, it can be advantageous to replace
the single inner conductor of acoaxia cable by two or more conductors.
Specifically, if the singleconductor isreplaced in the described manner by
two conductors, there results a saving of copper and if four conductors are
used, there results an appreciable higher channel capacity. A further advan-
tage isthat an increase in the number of conductors results in a decrease of
the bandwidth, which implies ssimpler hardware.

The results derived in this paper suggest one might also investigate cables
withn= 3, 5, 6, etc.

Analysis shows that adigital system for a coaxial pair should use alarge
number of levels to be optimum in the sense of maximum bit rate under the
constraint of constant bit error probability [9,11]. This large number of
levels, with itsinherent technical and economical problems can be evaded by
using an n-wire cable with parallel conductorsinstead of a coaxial cable. For
instance instead of using a coaxial cable and 16 levels, one could usethe 4
independent channels of a 4-wire cable, each particular channel having two
levels.

If n-wire cables are applied in P.C.M. systems, it is possible to match the
channelsin the sense of their capacities to the significance of the bits; the
channel with the highest capacity can be used for the most significant bit
and so on.

Systems, realized with the n-wire cables, can be treated as multichannel
systems that are the subject of several papers on multichannel communica-
tion theory [12].
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Appendix

In this appendix we prove that for maximum channel capacity the equality
signin egns. (15)and (16) must be chosen. To do so, we consider two differ-
ent waysto distribute an equal amount of input power over the frequency
hand as depicted in Fig. A.1.

In thefirst place we assume

N =N expkW}i'% (A1)

that has associated with it an input power P, and a channel capacity C; corre-
sponding respectively with egns. (19) and (21)

2 2 2N
P, =NW (1 - +_V~) exp [RW12 — =L A2
1 1 \ kW%/z k2W1 pl 1 J kz ( )
C,=3kWi? (A.3)
a>1
Py(f)

W, Wy —»f

Fig. A.1. Two different ways of input power frequency distribution.



In the second place we assume
A =aN exp{hW3?} witha>1 (A.4)

Substituting egn. (A.4) into egn. (14) we have the power spectral density of
the input signal in this second case

pi(f) = N{aexp(EWL?) — exp(kf'?)} foro<f< W, (A.5)
pi(f)=0 foralf>Ww,
Substituting egn. (A.5) into egn. (5) we obtain the input power

P,= NW, (a —Eé—/_z + 72—2%‘/—2) exp (EWL2} — %NZ_ (A.6)
Substituting egn. (A.4) into egn. (13) we get

Po(f) = aN exp(kWY2—kfY%) — N for 0<f< W, (A.T)
po(fy=0 foralf>w,

And substituting egn. (A.7)into egn. (6) we have

C2=3kW32+ Wylna (A.8)
The condition for equal power in both casesis

P =P, (A.9)
If weintroduce for the sake of simplicity the notation

b=Wiy?W5'"* jnd x - kWY? (A.10)
the condition (A.9) reads

a=(b2—-2}2+;2—2) exp{(b—1)x} +%—;2§ (A.11)

It isclear from eqgn. (A.11) that the requirement a> 1 asstated in egn. (A.4)
implies

b>1 (Al12)
Eliminating W, from egns. (A.3) and (A.10) we obtain

=1 3/2 QS,Z‘_l 3/2
Cy=3kW52+ 3 RW5 (A.13)
Comparing egns. (A.8) and (A.13) weseethat C, > C, iff
=1
a<exp| 3 «x (A.14)

To show thevalidity of egn. (A.14) we expand the exponent in egn. (A.11)



in a power seriesyielding

a= (=22 2w p -1+ 0 R
X x2 n! ) X

B b3(b—1)" _ 2b(b—1)"*! 2(b—1)"*2%)\ |
‘1+E( ! n+ 1) T T+ 2)! )x

LSS (b= 1) n(n+ 1) +2mb+2
L+ ,,Z:’l n! (n+1)n+2) X (A1)

Expanding the right hand side of eqn. (A.14) in a power series, we have
i_v_l 3 = (b_l)rl‘(b2+b+1)nxn
exp{ 3 x}—1+nz_>1 n! 3

(A.16)

Taking the difference between egns. (A.16) and (A.15) we get

P—1] s (b—1) Egh b+1)  n(n+1)b+ 2nb + 2} i

EXP[ 3 x} a‘nZCDZ n 3 (n+1)(n+2) x
(A1T7)

Noting that

(b® +b+11)f”_= sum of positive terms + n(n + 1)b? + 2nb + 2 (A.18)

3 6

we conclude that every term in the sum (A.17) is positive so the sum is posi-
tiveand (A.14)is proved. Therefore the first method of distributing the input
power isthe one that leads to a maximum channel capacity.
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Summary

This paper presents a procedural method for selecting and designing an
acceptable optimum power system configuration from a group of system
alternatives, to be established in asingle area or multiarea mode.

The procedural method developed is based on compiling data obtai ned
from load flow calculations with that of the optimum transmission loss
coefficients matrix [B] for each system, to come up with an optimum design
of any power system network in the sixth reference frame.

Identification of the optimum power network isin terms of the sym-
metrical resistance matrix asindicated in the following equation:

[R]=[K] [B]! (0)
where

[R] isthe symmetric resistance matrix
[ B] isthe optimum transmission loss coefficients matrix
[K] isamatrix function of load flow calculation parameters

By inspection of the [R] matricesfor agroup of optimum power system
alternatives, established under various percentages of total load received, the
most economically-optimum system can be identified, and a series of matrix
transformations produce its form in the actual or first reference frame.

Load flow calculations using the Newton— Raphson method and power
system optimization have been applied on 23,000-MW capacity of a cen-
tralized and a mixed centralized-dispersed power systems under al loadingsto
calculate the [K] and the optimum [B] matrices, respectively. Then by eqgn.
(0) above, elementsof the [R] matrices reflecting power system representa-
tion in the power flow frame have been established for all systemsand sub-
sytems, from which the most economically-optimum power network is



selected relying on the elements of the diagonal [R] matrices, since they
represent the direct path from each equivalent power source to the system
centroid.

it can be stated that analyzing any arbitrary power system in the power
flow reference frame according to the method presented in this paper can be
very economical with respect to consumption of computer time and
memory, since in thisframe, there is a substantially smaller number of total
power busbars and branchesthan in the actual power network.

1. Introduction [1—4]

Electrical power systems are generally represented in conventional form in
terms of datarelated to actual generating sources, |loads and impedances of
the interconnecting network. Thisisthefirst reference frame as called by
G. Kron. On the other hand, engineersin a single power area and multiarea
power pool usually deal with real power of the generating sources and real
power exchange.

In situations where prompt and decisive action is needed in comparing
several power systems of different configurations under a unified constraint,
it becomes necessary that those systems be expressed and identified in an
overall power equivalent reference frame. Also, the calculation of economic
scheduling of generation which relates the generating capacity of individual
plantsto total generation based on coordinating incremental production
costs and incremental transmission losses, is carried out in the power flow
reference frame (thesixth reference frame ascalled by G. Kron).

Optimization of power systemsfrom an economic standpoint can proceed
on the basis of arbitrary interconnecting networksin the power flow
reference frame subject to certain constraints such as minimum losses, speci-
fied total generation, specified plant capacity and total received load.

Determination of the optimum power system network in the sixth or
power flow reference frame can befollowed by a series of transformations
aimed at representing the optimum system in the actual or first reference
frame. To compare and analyze from the start several power system alter-
nativesin the actual first reference frame requires excessive computer time
as well aslarge memory capacity to absorb all the data.

The foregoing points out the necessity to develop acriterion by which
power system optimization in the power flow reference frame can be carried
out using the [B] matrix, power source outputswithin their maximum
ranges, and fuel cost data. Such acriterion was developed earlier [2] and
treated successfully on small power systems.

Based on the solution obtained for the optimum B matrix, coupled with
datafrom load flow calculation, a new path for designing the power network
in the sixth or power flow reference frame will be developed and tested in
this paper.



2. Statement of the problem

Given several optimum power system configurationsto be established in a
single area or multiarea mode, with each system followsthe conditions:

(a) The system contains »n equivalent generating sources of electromechan-
ical, electrochemical, solar, thermionic and nuclear nature, each possessing a
prescribed fuel cost curve, as shown in Fig. 1.

(b) Each system operates optimally according to the coordination criteria
relating incremental. generation costs and incremental transmission losses
costs, as expressed by egn. (1)

o F; Py,

aPi”\ aPi—A (1)
where

A =incremental cost of received power in dollars per MW-h

p, = power generating capacity of plant:in MW

F, =fuel cost of planti in dollars per hour

P, = total transmission losses

The coordination eqn. (L)issubject to the following constraints:

¢(Py, Py ...P,)=22 P, —P,—P.=0 (2)
=1
P, = 2J21PB,P, (3)
i
where
p, = divenreceived power (load)
B;; = elements of the transmission loss matrix

ij
The [B] matrix isassumed an implicit function of all power sources asindi-

cated in egns. (5)and (6) below.

P =1(P) (4)

B;; =g(P) (5)

Eqgns. (4) and (5) imply general recognition that B;; isstrongly connected

g
P, ~
5 O~
; - = System
- load
| s
1 —~
IR ~

Fig. 1. Power flow reference frame.



to power transfers among generating sources.
Because B;; is considered here an implicit function of power sources,
hence the total transmission loss Py, isassumed to take the functional form:

P = 2220 PB,P,; or, (6)
i

=y(P;, By, P) (7)

i

The problem centers on obtaining the optimum power system representa-
tion in the power flow reference frame in terms of the symmetrical resis
tance matrix. The solution will be verified on two systems, namely:

(1) A totally centralized system with electromechanical and electrochem-
ical generating units.

(2) A mixed dispersed-centralized system with electrochemical and elec-
tromechanical generating units.

3. Optimal solution for the [B] matrix [1,2,4]

Rewrite egn. (1):

op, " Nap, =
and assuming that a general functional form for the incremental fuel cost
curve for the power generating sourcesislinear, such that

oF,
ﬁ_i:FiiPi*'ff (8)
where

-

F, . -
SF’ = incremental fuel cost of plant i in dollars/MW-h

F;; = slope of incremental fuel cost surve

fi = incremental cost of plant i at zero output,

Substituting in egn. (1) from eqgns. (6) and (8)together with the limitation
of dependence stated in egns. (4) and (5), the following partial differential
equation is obtained:

(9)

oP, 0P, 0P 0By
F”Pl+fl+A[B”Pj+w‘£_j+__L‘—uJ‘—‘)\

OP; 3P, 3By 0P
Eqgn. (9) can be written as
dB

F. P+ f + x[B,.,-P_, +PB; qp *+ PP dpff} =2 (10)




where
P,, B;; and P, are symmetrical matrices.
Similarly. a compatible partner to egn. (10) isfound and expressed below:
dpP; dB; 1 \

i JdP JdP (]1)

Egns. (10) and (11) are two compatible matrix differential equations,
written in different functional forms in egns. (12) and (13), respectively:

0By 3B\ _ (1%
T](P P B”,’B"P—,FP) 0 (1Z)
9B, aBij)_
(P Py Bus op ) = O (13)
n—T=8=0 (14)

Eyn. (14) isanother compatible differential equation, which can be solved
for Pi, P;, B;;, 6B;;/8P; and 6B;,;/6P; by conversion to acanonical system,
presented below:

dp; _dp;  —d@ _  -—dZ dB, 5
dEP,‘ dél’j EPJ» + QEB i El’i + ZEB ZE/ ¥ QEQ
where
0B, dB;;

Z=5p, 97 5p,

oF , _ 0k _ ¢
gl’[ aP 9gl’j_— EB aBij

Apply eqn. (14) on egn. (15) to obtain:

az _ dQ
FiQ  FjZ (16)
or
Fy,Z* + F,Q* = k* (17)

k2 is a constant

Expressionsfor Q and Z could be secured by solving simultaneously egns.
(10) and (11).

For the purpose of finding the constant k% in egn. (17), the following
boundary conditions are secured from eqgn. (1),



_)\_fi
Pi= F; (18)
and
A —F
j:”jw‘ﬁ‘ (19)

ji
- fromegn. (17), resulting that k2 = 0
and now it becomes,
Fjj(api) +Fii(apj) 0 (20)
After solving simultaneously egns. (10) and (1L¥or Q and Z, and then
substituting in egn. (20), the following solution for B;; is obtained,
Bj; = [—FiF; ;PP + (\F;; — Fi, ;)P + (NFj; — Fj;[)P; +
+ (\fi + Ny — fif; = NOV[2 NF;P? + 2 NF, ;P +
+ (2Nf; - 2h2)P; + (2N f; — 2\*)P;] (21)
The above solution for the [B] matrix is based on minimum cost for a
given received load in terms of optimum scheduling of generation of all
power sources and fuel cost data. Of course elements of the [B] matrix will

change under different total received load with a new scheduling of genera-
tion.

4. Power flow referenceframe [ 3]

Where all real powers are expressed in a frame involving power exchange
among various equivalent generating sources as shown in Fig. 1.

The matrix of transformation to the power flow or sixth reference frame
is known asthe loss matrix with general terms given below.
Bu = KuRu —H(fi —f,) (22)

Then the total transmission loss Py, isexpressed as:

Py = 2325 PK R ;P — PH,(f; — f;)P; (23)
i J
where
1 - 24
Kij =y [(1+85)) cosy + (8, —S) sngy] (24)

1 .
Hy; = vy, [(1+88;) singy; +(S; — §;) cos¢y] (25)



fi=Rgi—wn b (26)

fi=Rgj vl (27)

i, = iuk/iL (28)

I, = theratio of load current at bus % to total load current

Bgi wr = resistance between generator : and load %

R e = resistance between generator ;j and load &

R;; = symmetric resistance in the sixth frame

H(fi—T; = could he neglected 1n a power system where ¢;, and

(S;—S;) are small, respectively

S, - ratio of reactive to real power at bus ¢

D, = phase angle between buses: and ;, respectively

» Egn. (11) becomes:

Py = EZ P.K;;R;P; (29)
t J

or

Bj; = KR (30)

R, = B,Ky! (31)

5. Basisfor power system network in the power flow frame [1—3,5]

The design criterion for an optimum power system of an arbitrary inter-
connecting network subject to the constraints of minimum transmission
losses, specified total received load, and specified plant capacity, isone of
the objectives of this paper. Such acriterion is based on the calculation of
the symmetrical resistance matrix in the power flow reference frame.

Also, a knowledge of the resistance matrices of more than one intercon-
necting network could serve asthe basisfor identifying the nature and type
of the power system, i.e., whether it be a centralized system, adispersed sys-
tem or amixed centralized-dispersed system asfar asthe locations of the
power generating sources are concerned.

The solution of the [B] matrix in terms of power generating sources with-
in their capacity and fuel cost data was obtained and restated in egn. (21)
with the[ K] matrix given in egn. (24).

Egn. (30) can be expanded in matrix form and written as follows:;

((KHRH)(KHRH) oo (K1nRu) |

B11B12 . - . Bin

By1Bys . . . By, | — | (K21R21)(K9sR55) - - - (K2n,R2,)
BnanZ e Bnn (Kannl) e (Knann)
B
Ry, =2t (32)



B
RIZZEi and so on (33)

Bnn
nn — KT,n
6. Using the diagonal [ R} matricesin comparison of power system alternatives

R

The overall [R] matrix can be expressed as below:
"By1/Kyy ... By, /Ky, |

201/Koq ... Boy/Ka,
[R] =) “EHTELT (34)

Bnl/Knl O Bnn/]{mﬂ

The elements in the matrix of egn. (34) are the self symmetrical
resistances of the individual power sources from areference point, and
mutual symmetrical resistances among the individual sources, all represented
in the power flow frame.

. R, Ry, ...R,, =thesdf symmetrical resistance of power sources1, 2,
3, ..., h with respect to a reference point.
Ri»,R ...Ry, = the mutual symmetrical resistances between power
source No. 1 with respect to power source No. n.

Calculation of the [ R] matrix elements requires the following data:

(1) Load flow calculations to secure information for the [K] matrix,
namely voltage magnitude, phase angle, real and reactive power of each
busbar.

(2) Compl ete establishment of the [B] matrices under all loadings for the
presumed power system. (i.e. for every value of P,). Application of egn. (34)
together with the procedure of calculating the [ R] symmetric matrix which
reflects an optimum power system design in the power flow reference frame,
was demonstrated for the following two systems. As an example:

(A) A centralized system of 32 equivalent power source busbars with total
peak received load of 23,000 MW.

(B) A dispersed-centralized system of 123 equivalent busbars having the
same total peak received load of 23,000 MW.

For the above two presumed systems, load flow calculations were carried
out on al loadings based on the Newton— Raphson method on the IBM 360
Computer.

Also the [B] matricesfor all loadings were obtained for the above-men-
tioned two systems according to eqn. (21) where in each case P, was taken
at 60%, 7096, 80%, 90% and 100% of peak received load.

By compiling elementsfrom the [ K] matrices with those of the [ B]
matrices for the two systems, elements of the [ R] matrices are obtained
by asimple computer program, run on the RCA 70 machine, the capacity



of which was quite adequate even for the large number of 123 busbars.

However, since the number of busbars in the centralized-dispersed system
is123, compared to 32 to the centralized system, a unified basisfor com-
parison is obtained from extracting the diagonal elements from the full
matrix and forming a new diagonal matrix.

Asexplained earlier, the elements of the new diagonal matrix have a great
significance since they represent the symmetrical resistance of each power
source with respect to the system centroid or reference point, and hence
can serve asa justified basisfor comparing more than one optimum power
network in the sixth reference frame.

7. Results

Carrying out the procedure explained earlier for the establishment of the
symmetrical resistance diagonal matrices for systems A and B, under all
loading conditions, (P, = 60, 70, SO, 90 and 100% of peak load) the follow-
ing information for 70% base loading islisted as a typical case for other load-
ings mentioned above.

Table 1. contains the diagonal elements of the [R] matrix for the 32
busbar centralized system extracted from the overall much larger [R]
matrix.

Table 2 contains the diagonal elements of the [R] matrix for the 132
busbar dispersed-centralized system extracted from the much larger overall
[R] matrix.

(continued on p. 152)

TABLE 1

Self-symmetric resistance matrix for centralized system
Values listed are 106 times their true p.u. values

Bus No.

70% Loading Bus. No 70% Loading
1 73.9802 17 613880.3
2 1.3380 18 —69.4038
3 —396.5701 19 80.3259
4 62.0394 20 38.4445
5 8.5583 ' 21 58.2755
6 —22.0731 29 429.6367
7 149.2670 23 3078.50
8 —14.2234 24 —38.7570
9 —7.1399 25 41.4405
10 —303.6730 26 29.4890
11 -—3961.8000 27 0.7789
12 11.7583 28 29.4290
13 64.4223 29 3.7398
14 299.5341 30 267.4327
15 —255.2030 31 —95.4486

16 18.3579 32 736.7194
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The diagonal elementslisted in Tables 1 and 2 represent the elemental
resistance path from each busbar in the power flow reference frame to the
system centroid.

The finite elemental valuesindicated in Table A identify the presumed
centralized mode of this system.

In Table 2, the elemental non-zero values refer to those power busbars of
centralized location maintained in the new system with respect to total load
supplied by them, while the zero elemental values refer to those dispersed
busbars scattered in the power system at close proximity to the system
centroid rendering their resistance path negligible as demonstrated by their
zero values.

8. Conclusions

Economic evaluation, stability, reliability and the overall power system
security, can be given direct and prompt analysis once the load flow calcula
tion and optimum transmission loss coefficients information obtained for
several power system alternatives, are established on different grounds.

This paper can support the following conclusions:

(a) Optimal form for the transmission loss coefficients matrix as expressed
inegn. (21) could be calculated at any fixed percentage of received load P,,
in terms of optimum capacities of all power sources and fuel cost data. Com-
puter time required for obtaining the [ B] matrix from this method is much
less than that needed for using the conventional form of the [B] matrix
which depends on information derived from load flow calculations, such as
voltage magnitude, phase angle, real and reactive power of all busbars,
besidesthe power network constants.

(b) An overall [ R] matrix for an optimum power system reflecting
network design in the power flow reference frame can be established for al
loadings, based on data compiled from load flow calculations and optimum
[ B] matrices.

(c) A diagonal [ R] matrix can be extracted from the overall matrix, to
indicate on asmaller scale, (especialy in a power system with large numbers
of busbars) the direct resistive elemental path from each power equivalent
busbar to the system centroid.

(d) Inspection of the order of magnitudes of the diagonal matrices under
all percentages of total received loads for each optimum system can serve as
a basic criterion for identifying that arbitrary interconnecting network and
its eventual design in the actual reference frame.

Therefore, an inspection of Table 1, which lists the elements of diagonal
matrices for an optimum centralized power system, under all percentages of
loading, revealsthat ail of those elements are non-zero and of sizeable values.
Thisimpliesthe feasibility of the optimal form of this centralized system,
and consequently itsdesign in thefirst reference frame.

Also, inspection of Table 2 indicates that all the newly established



dispersed power bushars have a zero resistance path with respect to the
system reference point, while those non-zero values of the diagonal matrices
refer to the originally existing centralized busbars. Hence this represents
again the exact identification and feasibility of the presumed arbitrary inter-
connecting network for adisperseti-centralized power system and its design
and physical r alization in the first frame.

The above procedure of network identification and its physical realization
for the two optimum systems A and B, in fact serves as an example in com-
paring several power system alternative having different numbers of busbars,
to be established under different constraints, as mentioned in the introduc-
tory part of this paper.

(e)ldentification of a power system in the sixth reference frame (known
asthe power flow frame) can lead to system representation in each of the
other preceding five frames, by applying the corresponding transformation
matrices given by Kron. In the case of actual optimum power system design,
itsidentification in the first reference frame (individual currents and actual
interconnection) representsthe direct operational form.

(f) Analyzing any power system in the power flow reference frame, can he
very economical with respect to computer time and memory, sincein this
frame there will be a smaller total number of busbars and a smaller number
of interconnecting branches.
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Letter to the Editor

Van der Pol's problem is essentially one of those requiring the — holo-
physical — Aristomodel for itssolution.

A projection of this space model isgivenin the Figure; it may be
compared to the circuitry used by Tellegen in his gyrator, wherein an
inductance in the metallic part of the circuit | convertsinto a capacitancein
circuit I1, the circuits being coupled in a plasma p, in which | suffersattenua-
tion (+) thereby (microphysically) inducing (negative)attenuation in circuit
1. Besides the plasma conversion of L into C isaso activein the inversion of
+ into — for the attenuation it introduces; the usual Barkhausen approxima-
tions cannot be used, nor may understanding of this phenomenon be
furthered by macro-considerations (the negative resistance in I1 inducing
oscillations in its own resonances). The negative damping mentioned in line 4
of JW. Alexander's article (Vol.1, No. 4) cannot otherwise be found. Apart
from this remark his calculations are of course beyond question.

I < L T

[

A more detailed account of Holophysics and its relation to Economics
and to the 5 Disciplines treated for Unsolved Riddles, discussed at the 27th
Sept. conference of the Natuur- en Geneeskundig Congres in Amsterdam
(1975) may be found in the contribution to ZWO at the Hague (Korteweg
and Wynma, unpublished paper). Plasmap may be taken as a Neon tube,
circuit | asits power, II asits parallel capacitance. For a comparable intro-
duction to negative friction see also Morse and Fresbach, Methods of
Theoretical Physics, McGraw-Hill, N.Y., 1953, Vol. I, p. 298.

L.AW. van der Lek
Oud Ade (The Netherlands)
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